Preview

Современная наука и инновации

Расширенный поиск

НЕЙРОСЕТЕВОЙ МЕТОД КЛАССИФИКАЦИИ ЛИТЕРАТУРНОГО ТЕКСТА С ТОЧКИ ЗРЕНИЯ ЕГО ЖАНРОВОЙ ИДЕНТИФИКАЦИИ

https://doi.org/10.33236/2307-910Х- 2018-4-24-66-71

Аннотация

Цифровые технологии позволяют сегодня обрабатывать большое количество литературных источников с целью обеспечения доступности и сохранения исторического наследия.

Об авторах

Екатерина Андреевна Кучукова
Северо-Кавказский федеральный университет
Россия


Ирина Андреевна Бабенко
Северо-Кавказский федеральный университет
Россия


Наталья Григорьевна Гудиева
Северо-Кавказский федеральный университет
Россия


Сафват Чиад Аль-Гальда
Северо-Кавказский федеральный университет
Россия


Список литературы

1. Томашевский Б.В. Теория литературы // Репринт, воспроизв. изд.: Л.: Госиздат, 1925. Letchworth, Hertfordshire : Bradda Books Ltd., 1971.232 с.

2. Успенский В. А. К семиотическим посланиям Андрея Николаевича Колмогорова // Новое литературное обозрение. 1997. №. 24.

3. Дюк В. A. Data Mining-интеллектуальный анализ данных // Санкт-Петербургский институт информатики и автоматизации РАН. 1999.

4. Галушкин А. И. Нейронные сети: основы теории. М.: Горячая линия-Телеком, 2010. Т. 496.

5. Хализев В. Е. Теория литературы. М.: Высшая школа, 1999.

6. Баевский В. Лингвистические, математические, семиотические и компьютерные модели в истории и теории литературы. Litres, 2017.

7. Akmajian A. et al. Linguistics: An introduction to language and communication. - MIT press, 2017.

8. Pinker S. Words and rales in the human brain //Nature. 1997. T. 387. №. 6633. C. 547.

9. Pinker S. The language instinct: How the mind creates language. - Penguin UK, 2003.

10. Van Dijk T. A. Semantic macro-structures and knowledge frames in discourse comprehension //Cognitive processes in comprehension. 1977. T. 332.

11. Montemurro M. A., Zanette D. H. Entropic analysis of the role of words in literary texts //Advances in complex systems. 2002. T. 5. №. 01. C. 7-17.


Рецензия

Для цитирования:


Кучукова Е.А., Бабенко И.А., Гудиева Н.Г., Аль-Гальда С.Ч. НЕЙРОСЕТЕВОЙ МЕТОД КЛАССИФИКАЦИИ ЛИТЕРАТУРНОГО ТЕКСТА С ТОЧКИ ЗРЕНИЯ ЕГО ЖАНРОВОЙ ИДЕНТИФИКАЦИИ. Современная наука и инновации. 2018;(4):66-71. https://doi.org/10.33236/2307-910Х- 2018-4-24-66-71

For citation:


Kuchukova E.A., Babenko I.A., Gudieva N.G., Al-Galda S.Ch. THE NEURAL NETWORK METHOD CLASSIFICATION OF LITERARY TEXT FROM THE VIEWPOINT OF ITS GENRE IDENTIFICATION. Modern Science and Innovations. 2018;(4):66-71. (In Russ.) https://doi.org/10.33236/2307-910Х- 2018-4-24-66-71

Просмотров: 75


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)