Preview

Modern Science and Innovations

Advanced search

THE ANALYSIS OF THE NOISE OF QUANTIZATION OF LINEAR STATIONARY FILTERS OF IMAGE PROCESSING

Abstract

The problem of quantization of the coefficients of arbitrary linear stationary filters in order to minimize the noise of this phenomenon and efficient hardware implementation of digital image processing methods is investigated in the paper. The implementation of the method of linear stationary filtration is proposed, which makes it possible to reduce the number of filter coefficients and simplify the performance of rounding operations.

About the Authors

Nikolay Ivanovich Chervyakov
North-Caucasus Federal University
Russian Federation


Pavel Alekseevich Lyakhov
North-Caucasus Federal University
Russian Federation


Nikolay Nikolaevich Nagornov
North-Caucasus Federal University
Russian Federation


References

1. Gonzalez R. C. Digital Image Processing, 3rd ed. / R. C. Gonzalez, R. E. Woods. Prentice Hall, 2007. 976 p.

2. Bovik A. C. Handbook of image and video processing, 2nd ed. / A.C. Bovik. Elsevier Academic Press, 2005. 1429 p.

3. Shih F. Y. Image Processing and Pattern Recognition: Fundamentals and Techniques / Wiley-IEEE Press, 2010. 552 p.

4. Bailey G. Design for embedded image processing on FPGAs / Wiley-IEEE Press, 2011. 482 p.

5. Mohanty B. K. Memory Footprint Reduction for Power-Efficient Realization of 2-D Finite Impulse Response Filters / B. K. Mohanty, P. K. Meher, S. Al-Maadeed, A. Amira // IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 1, 2013, pp. 120-133.

6. Zhang X. VLSI Architecture Exploration of Guided Image Filtering for 1080P@60Hz Video Processing / X. Zhang, H. Sun, S. Chen, and N. Zheng // IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 1, 2016, pp. 230-241.

7. Junior E. I. Performance Analysis of Algorithms over FPGA for Removing Salt and Pepper Noise / E. I. Junior, L. M. Garces, A. J. Cabrera and T. C. Pimenta // IEEE Latin America Transactions, vol. 14, no. 5, 2016, pp. 2120-2127.

8. Kalali E. Low Complexity 2D Adaptive Image Processing / E. Kalali and I. Hamzaoglu // IEEE Transactions on Consumer Electronics, vol. 63, no. 3, 2017, pp. 277-284.

9. Chen P.-Y. Power-Efficient and Cost-Effective 2-D Symmetry Filter Architectures / P.-Y. Chen, L.-D. Van, I-H. Khoo, H.C. Reddy, and C.-T. Lin // IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 7, 2010, pp. 112-125.

10. Khan T. M. Efficient Hardware Implementation For Fingerprint Image Enhancement Using Anisotropic Gaussian Filter / T. M. Khan, G. Bailey, M. A. U. Khan, and Y. Kong // IEEE Transactions on Image Processing, vol. 26, no. 5, 2017, pp. 2116-2126.

11. Karabchevsky S. FPGA-Based Adaptive Speckle Suppression Filter for Underwater Imaging Sonar / S. Karabchevsky, D. Kahana, O. Ben-Harush, and H. Guterman // IEEE Journal of Oceanic Engineering, vol. 36, no. 4, 2011, pp. 646-657.

12. Schlichtharle D. Digital Filters: Basics and Design, 2nd ed. / D. Schlichtharle. Springer, 2011. 527 p.

13. Mehrnia A. A Lower Bound for the Hardware Complexity of FIR Filters / A. Mehrnia and A.N. Willson // IEEE Circuits and Systems Magazine, vol. 18, no. 1, 2017, pp. 10-28.

14. Rao K.R. The Transform and Data Compression Handbook / K.R. Rao and P.C. Yip. CRC press, 2001. 399 p.

15. Basso A. Blind Watermarking of Color Images Using Karhunen-Loeve Transform Keying / A. Basso, D. Cavagnino, V Pomponui and A. Vernone // The Computer Journal, vol. 54, no. 7, 2011, pp. 1076-1090.

16. Moeslund T. Canny Edge Detection / T. Moeslund. 2009, retrieved 2014. Available at http://www.cse.iitd.ernet.in/~pkalra/ col783/canny.pdf.


Review

For citations:


Chervyakov N.I., Lyakhov P.A., Nagornov N.N. THE ANALYSIS OF THE NOISE OF QUANTIZATION OF LINEAR STATIONARY FILTERS OF IMAGE PROCESSING. Modern Science and Innovations. 2018;(2):27-34. (In Russ.)

Views: 68


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)