Preview

Modern Science and Innovations

Advanced search

CLASSIFICATION OF TASKS FOR GROUP ROBOTICS FOR METHODS LABOR DIVISION

https://doi.org/10.37493/2307-910X.2023.1.3

Abstract

At present, technologies and methodological aspects of managing groups of multirobotized systems intensively developed. The full application of decentralized groups of robots requires the solution of several classes of problems, one of which known as the distribution of tasks in a group of robots or the division of labor. Algorithms for the division of labor are diverse and based on a wide range of mathematical methods, many scientific works are devoted to this issue. To systematize the methods of task distribution, this paper analyzes and classifies the tasks to solve for group robotics. In the process of studying the literature on this issue, a pool of tasks obtained that solve certain methods. As a result of the literature review, it is proposed to introduce a classification of tasks based on the specifics of their implementation.

About the Authors

V. I. Petrenko
Federal State Autonomous Educational Institution of Higher Education «North-Caucasus Federal University»
Russian Federation

 Vyacheslav I. Petrenko, Cand. Sci. (Tech.), Associate Professor, Head of the Department of Organization and Technology of Information Security of the Institute of
Digital Development 

355017, Stavropol Territory, Stavropol, Pushkina str., 1. 



F. B. Tebueva
Federal State Autonomous Educational Institution of Higher Education «North-Caucasus Federal University»
Russian Federation

 Fariza B. Tebueva, Dc. Sci. (Phys.-Math), Associate Professor, Head of the Computer Security Department of the Institute of Digital Development

 355017, Stavropol Territory, Stavropol, Pushkina str., 1. 



V. O. Antonov
Federal State Autonomous Educational Institution of Higher Education «North-Caucasus Federal University»
Russian Federation

 Vladimir O. Antonov, Cand. Sci. (Tech.), Associate Professor of the Department of Computer Security of the Institute of Digital Development

 355017, Stavropol Territory, Stavropol, Pushkina str., 1 



References

1. Kalyaev I. A., Gaiduk A. R., Kapustyan S. G. Modeli i algoritmy kollektivnogo upravleniya v gruppakh robotov. – M.: FIZMATLIT, 2009. – 280 s.

2. Zakiev, Aufar, Tsoy, Tatyana, Magid, Evgeni (2018). Swarm Robotics: Remarks on Terminology and Classification: Third International Conference, ICR 2018, Leipzig, Germany, September 18-22, 2018, Proceedings. 10.1007/978-3-319-99582-3_30.

3. S. Chung, A. A. Paranjape, P. Dames, S. Shen and V. Kumar, "A Survey on Aerial Swarm Robotics," in IEEE Transactions on Robotics, vol. 34, no. 4, pp. 837-855, Aug. 2018, doi: 10.1109/TRO.2018.2857475.

4. Pshikhopov V.Kh., Soloviev V.V., Titov A.E., Finaev V.I., Shapovalov I.O. Group control of moving objects in uncertain environments / Ed. V.Kh. Pshikhopova. – M.: FIZMATLIT, 2015. – 305 p.

5. Kowalczyk W. Target Assignment Strategy for Scattered Robots Building Formation // Proc. of the 3rd Intern. Workshop on Robot Motion and Control. Poland, Poznan, 2002. – P. 181–185.

6. N. Mathew, S. L. Smith and S. L. Waslander, "Planning Paths for Package Delivery in Heterogeneous Multirobot Teams," in IEEE Transactions on Automation Science and Engineering, vol. 12, no. 4, pp. 1298-1308, Oct. 2015, doi: 10.1109/TASE.2015.2461213.

7. Zavlanos M., Spesivtsev L., Pappas G. A distributed auction algorithm for the assignment problem // Proc. of the IEEE Conf. on Decision and Control. – 2008. – P. 1212– 1217.

8. C. Nam and D. A. Shell, "Assignment Algorithms for Modeling Resource Contention in Multirobot Task Allocation," in IEEE Transactions on Automation Science and Engineering, vol. 12, no. 3, pp. 889-900, July 2015, doi: 10.1109/TASE.2015.2415514.

9. S. Chopra, G. Notarstefano, M. Rice and M. Egerstedt, "A Distributed Version of the Hungarian Method for Multirobot Assignment," in IEEE Transactions on Robotics, vol. 33, no. 4, pp. 932-947, Aug. 2017, doi: 10.1109/TRO.2017.2693377.

10. G. Notomista, S. Mayya, S. Hutchinson and M. Egerstedt, "An Optimal Task Allocation Strategy for Heterogeneous Multi-Robot Systems," 2019 18th European Control Conference (ECC), 2019, pp. 2071-2076, doi: 10.23919/ECC.2019.8795895.

11. Zavlanos M., Spesivtsev L., Pappas G. A distributed auction algorithm for the assignment problem // Proc. of the IEEE Conf. on Decision and Control. – 2008. – P. 1212–1217.

12. Bertsekas D., Castanon D. Parallel synchronous and asynchronous implementations of the auction algorithm // Intern. J. of Parallel Computing. – 1991. – Vol. 17. – P. 707–732.

13. L. Luo, N. Chakraborty and K. Sycara, "Provably-Good Distributed Algorithm for Constrained Multi-Robot Task Assignment for Grouped Tasks," in IEEE Transactions on Robotics, vol. 31, no. 1, pp. 19-30, Feb. 2015, doi: 10.1109/TRO.2014.2370831.

14. Zavlanos M., Pappas G. Dynamic assignment in distributed motion planning with local coordination // IEEE Transactions on Robotics. – 2008. – Vol. 24, No. 1. – P. 232–242.

15. Zavlanos M., Pappas G. Sensor-based dynamic assignment in distributed motion planning // Proc. of the IEEE Intern. Conf. on Robotics and Automation. – 2007. – P. 3333–3338.

16. S. Berman, A. Halasz, M. A. Hsieh and V. Kumar, "Optimized Stochastic Policies for Task Allocation in Swarms of Robots," in IEEE Transactions on Robotics, vol. 25, no. 4, pp. 927-937, Aug. 2009, doi: 10.1109/TRO.2009.2024997.

17. R. Liu, M. Seo, B. Yan and A. Tsourdos, "Decentralized task allocation for multiple UAVs with task execution uncertainties," 2020 International Conference on Unmanned Aircraft Systems (ICUAS), 2020, pp. 271-278, doi: 10.1109/ICUAS48674.2020.9213989.

18. Mouton H., Roodt J., Roux H. Applying Reinforcement Learning to the Weapon Assignment Problem in Air Defense // Scientia Militaria, South African J. of Military Studies. – 2011. – Vol. 39, No. 2. – P. 1–15.

19. H. Zhao, M. Dorigo and M. Allwright, "General Dynamic Neural Networks for the Adaptive Tuning of an Omni-Directional Drive System for Reactive Swarm Robotics," 2021 25th International Conference on Methods and Models in Automation and Robotics (MMAR), 2021, pp. 79-84, doi: 10.1109/MMAR49549.2021.9528468.

20. Mukhedkar R., Naik S. Weapon Target Allocation Problem Using Fuzzy Model // Intern. J. of Application or Innovation in Engineering & Management. – 2013. – Vol. 2, № 6.– P. 279–289.

21. T. Wei, H. Yongjiang, Z. Yuefei, L. Wenguang and Z. Xiaomeng, "Multi-UAV Task Allocation Based on Type Mamdani Fuzzy Logic," 2021 7th International Symposium on Mechatronics and Industrial Informatics (ISMII), 2021, pp. 184-187, doi: 10.1109/ISMII52409.2021.00046.

22. Yuan M., Ling M-X., Zeng Q-S. An AntColony Algorithm Based on Pheromone Declining for Solving the WTA Problem // Intern. J. on Computer Simulation. – 2008. – Vol. 25, No. 2. – P. 23–25.

23. D. Payton, M. Daily, R. Estowski, M. Howard, and C. Lee, ―Pheromone robotics,‖ Auton. Robot., vol. 11, no. 3, pp. 319–324, Nov. 2001.

24. D. Payton, R. Estkowski, and M. Howard, ―Pheromone robotics and the logic of virtual pheromones,‖ in Proc. 1st Int. Workshop Swarm Robotics at SAB 2004, LNCS vol. 3342. Berlin, Germany: Springer-Verlag, 2005, pp. 45–57.

25. S. Oliveira, M. S. Hussin, A. Roli, M. Dorigo and T. Stützle, "Analysis of the population-based ant colony optimization algorithm for the TSP and the QAP," 2017 IEEE Congress on Evolutionary Computation (CEC), 2017, pp. 1734-1741, doi: 10.1109/CEC.2017.7969511.

26. T. Liao, K. Socha, M. A. Montes de Oca, T. Stützle and M. Dorigo, "Ant Colony Optimization for Mixed-Variable Optimization Problems," in IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 503-518, Aug. 2014, doi:10.1109/TEVC.2013.2281531.

27. A. Brutschy, A. Scheidler, E. Ferrante, M. Dorigo and M. Birattari, "―Can ants inspire robots?‖ Self-organized decision making in robotic swarms," 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012, pp. 4272-4273, doi: 10.1109/IROS.2012.6386273.

28. Murphy R. Target-Based Weapon Target Assignment Problems // Nonlinear Assignment Problems: Algorithms and Applications. Kluwer Academic Publishers. – 1999. – Vol. 7. – P. 39–53.

29. Sikanen T. Solving Weapon Target Assignment Problem with Dynamic Programming // Independent research projects in applied mathematics. – 2008. – 32 p.

30. J. Yu and S. M. LaValle, "Optimal Multirobot Path Planning on Graphs:Complete Algorithms and Effective Heuristics," in IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1163-1177, Oct. 2016, doi: 10.1109/TRO.2016.2593448.

31. Shimaa T., Rasmussena S., Sparksa A., Passino K. Multiple task assignments for cooperating uninhabited aerial vehicles using genetic algorithms // Computers & Operations Research 33. – 2006. – P. 3252–3269.

32. R. Patel, E. Rudnick-Cohen, S. Azarm, M. Otte, H. Xu and J. W. Herrmann, "Decentralized Task Allocation in Multi-Agent Systems Using a Decentralized Genetic Algorithm," 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 3770-3776, doi: 10.1109/ICRA40945.2020.9197314.

33. M. Soleimanpour-Moghadam and H. Nezamabadi-Pour, "Discrete Genetic Algorithm for Solving Task Allocation of Multi-robot Systems," 2020 4th Conference on Swarm Intelligence and Evolutionary Computation (CSIEC), 2020, pp. 006-009, doi: 10.1109/CSIEC49655.2020.9237316.

34. W. Husheng, L. Hao and X. Renbin, "A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation," in Journal of Systems Engineering and Electronics, vol. 32, no. 5, pp. 1180-1199, Oct. 2021, doi: 10.23919/JSEE.2021.000101.

35. Y. Msala, M. Hamlich and A. Mouchtachi, "A new Robust Heterogeneous MultiRobot Approach Based on Cloud for Task Allocation," 2019 5th International Conference on Optimization and Applications (ICOA), 2019, pp. 1-4, doi: 10.1109/ICOA.2019.8727618.

36. Zhang J., Wang X., Xu C. ACGA Algorithm of Solving Weapon Target Assignment Problem // Open J. of Applied Science. – 2012. – Vol. 2, No. 4B. – P. 74-77.

37. X. Kong, Y. Gao, T. Wang, J. Liu and W. Xu, "Multi-robot Task Allocation Strategy based on Particle Swarm Optimization and Greedy Algorithm," 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2019, pp. 1643-1646, doi: 10.1109/ITAIC.2019.8785472.

38. C. Wei, Z. Ji and B. Cai, "Particle Swarm Optimization for Cooperative MultiRobot Task Allocation: A Multi-Objective Approach," in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2530-2537, April 2020, doi: 10.1109/LRA.2020.2972894.

39. S. Mayya, D. S. D‘antonio, D. Saldaña and V. Kumar, "Resilient Task Allocation in Heterogeneous Multi-Robot Systems," in IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1327-1334, April 2021, doi: 10.1109/LRA.2021.3057559.

40. D. Panagou, M. Turpin and V. Kumar, "Decentralized Goal Assignment and Safe Trajectory Generation in Multirobot Networks via Multiple Lyapunov Functions," in IEEE Transactions on Automatic Control, vol. 65, no. 8, pp. 3365-3380, Aug. 2020, doi: 10.1109/TAC.2019.2946333.

41. L. Luo, N. Chakraborty and K. Sycara, "Distributed Algorithms for Multirobot Task Assignment With Task Deadline Constraints," in IEEE Transactions on Automation Science and Engineering, vol. 12, no. 3, pp. 876-888, July 2015, doi: 10.1109/TASE.2015.2438032.

42. P. Velagapudi, K. Sycara and P. Scerri, "Decentralized prioritized planning in large multirobot teams," 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 4603-4609, doi: 10.1109/IROS.2010.5649438.

43. J. Hu, P. Bhowmick and A. Lanzon, "Group Coordinated Control of Networked Mobile Robots With Applications to Object Transportation," in IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 8269-8274, Aug. 2021, doi: 10.1109/TVT.2021.3093157.

44. J. Hu, P. Bhowmick, I. Jang, F. Arvin and A. Lanzon, "A Decentralized Cluster Formation Containment Framework for Multirobot Systems," in IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1936-1955, Dec. 2021, doi: 10.1109/TRO.2021.3071615.

45. D. A. Shell and M. J. Mataric, "On foraging strategies for large-scale multi-robot systems," 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006, pp. 2717-2723, doi: 10.1109/IROS.2006.281996.

46. C. Nam and D. A. Shell, "Assignment algorithms for modeling resource contention and interference in multi-robot task-allocation," 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 2158-2163, doi: 10.1109/ICRA.2014.6907156.

47. M. Otte, M. Kuhlman and D. Sofge, "Multi-robot task allocation with auctions in harsh communication environments," 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), 2017, pp. 32-39, doi: 10.1109/MRS.2017.8250928.

48. A. Ulusoy, S. L. Smith, X. C. Ding and C. Belta, "Robust multi-robot optimal path planning with temporal logic constraints," 2012 IEEE International Conference on Robotics and Automation, 2012, pp. 4693-4698, doi: 10.1109/ICRA.2012.6224792.

49. S. L. Smith, J. Tůmová, C. Belta and D. Rus, "Optimal path planning under temporal logic constraints," 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2010, pp. 3288-3293, doi: 10.1109/IROS.2010.5650896.

50. J. P. van den Berg and M. H. Overmars, "Prioritized motion planning for multiple robots," 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, pp. 430-435, doi: 10.1109/IROS.2005.1545306.

51. A. Kamphuis and M. H. Overmars, "Motion planning for coherent groups of entities," IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, 2004, pp. 3815-3822 Vol.4, doi: 10.1109/ROBOT.2004.1308863.

52. S. M. LaValle and S. A. Hutchinson, "Optimal motion planning for multiple robots having independent goals," in IEEE Transactions on Robotics and Automation, vol. 14, no. 6, pp. 912-925, Dec. 1998, doi: 10.1109/70.736775.

53. J. Yu and S. M. LaValle, "Planning optimal paths for multiple robots on graphs," 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 3612-3617, doi: 10.1109/ICRA.2013.6631084.

54. J. Yu, S. M. LaValle and D. Liberzon, "Rendezvous Without Coordinates," in IEEE Transactions on Automatic Control, vol. 57, no. 2, pp. 421-434, Feb. 2012, doi: 10.1109/TAC.2011.2158172.

55. I. Jang, H. Shin and A. Tsourdos, "Anonymous Hedonic Game for Task Allocation in a Large-Scale Multiple Agent System," in IEEE Transactions on Robotics, vol.34, no. 6, pp. 1534-1548, Dec. 2018, doi: 10.1109/TRO.2018.2858292.

56. H. -S. Shin, C. Leboucher and A. Tsourdos, "Resource allocation with cooperative path planning for multiple UAVs," Proceedings of 2012 UKACC International Conference on Control, 2012, pp. 298-303, doi: 10.1109/CONTROL.2012.6334646.

57. P. Segui-Gasco, Hyo-Sang Shin, A. Tsourdos and V. J. Seguí, "Decentralised submodular multi-robot Task Allocation," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 2829-2834, doi: 10.1109/IROS.2015.7353766.

58. Y. Chen, M. Cutler and J. P. How, "Decoupled multiagent path planning via incremental sequential convex programming," 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 5954-5961, doi: 10.1109/ICRA.2015.7140034.

59. A. K. Whitten, H. Choi, L. B. Johnson and J. P. How, "Decentralized task allocation with coupled constraints in complex missions," Proceedings of the 2011 American Control Conference, 2011, pp. 1642-1649, doi: 10.1109/ACC.2011.5990917.

60. V. R. Desaraju and J. P. How, "Decentralized path planning for multi-agent teams in complex environments using rapidly-exploring random trees," 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 4956-4961, doi: 10.1109/ICRA.2011.5980392.

61. S. S. Ponda, L. B. Johnson and J. P. How, "Distributed chance-constrained task allocation for autonomous multi-agent teams," 2012 American Control Conference (ACC), 2012, pp. 4528-4533, doi: 10.1109/ACC.2012.6315626.

62. H. Choi, A. K. Whitten and J. P. How, "Decentralized task allocation for heterogeneous teams with cooperation constraints," Proceedings of the 2010 American Control Conference, 2010, pp. 3057-3062, doi: 10.1109/ACC.2010.5530496.

63. G. Neville, A. Messing, H. Ravichandar, S. Hutchinson and S. Chernova, "An Interleaved Approach to Trait-Based Task Allocation and Scheduling," 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2021, pp. 1507-1514, doi: 10.1109/IROS51168.2021.9636569.

64. S. K. K. Hari, A. Nayak and S. Rathinam, "An Approximation Algorithm for a Task Allocation, Sequencing and Scheduling Problem Involving a Human-Robot Team," in IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2146-2153, April 2020, doi: 10.1109/LRA.2020.2970689.

65. M. Dorigo et al., "Swarmanoid: A Novel Concept for the Study of Heterogeneous Robotic Swarms," in IEEE Robotics & Automation Magazine, vol. 20, no. 4, pp. 60-71, Dec. 2013, doi: 10.1109/MRA.2013.2252996.

66. M. Dorigo, V. Maniezzo and A. Colorni, "Ant system: optimization by a colony of cooperating agents," in IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 26, no. 1, pp. 29-41, Feb. 1996, doi: 10.1109/3477.484436.

67. M. Dorigo and L. M. Gambardella, "Ant colony system: a cooperative learning approach to the traveling salesman problem," in IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 53-66, April 1997, doi: 10.1109/4235.585892.

68. F. Mondada, L. M. Gambardella, D. Floreano, S. Nolfi, J. -. Deneuborg and M. Dorigo, "The cooperation of swarm-bots: physical interactions in collective robotics," in IEEE Robotics & Automation Magazine, vol. 12, no. 2, pp. 21-28, June 2005, doi: 10.1109/MRA.2005.1458313.

69. S. Nouyan, R. Gross, M. Bonani, F. Mondada and M. Dorigo, "Teamwork in SelfOrganized Robot Colonies," in IEEE Transactions on Evolutionary Computation, vol. 13, no. 4, pp. 695-711, Aug. 2009, doi: 10.1109/TEVC.2008.2011746.

70. M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli and M. Dorigo, "Heterogeneous particle swarm optimizers," 2009 IEEE Congress on Evolutionary Computation, 2009, pp. 698-705, doi: 10.1109/CEC.2009.4983013.

71. B. P. Gerkey and M. J. Mataric. A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research, 23(9), 2004.

72. Chien, S., Barrett, A., Estlin, T., & Rabideau, G. A Comparison of Coordinated Planning Methods for Cooperating Rovers. In International Conference on Autonomous Agents (Agents 2000), Barcelona, Spain, June, 2000.

73. Yamada S., Saito J. Adaptive Action Selection Without Explicit Communication for Multirobot Box-Pushing // IEEE Transactions on Systems, Man, and Cybernetics. Part C: Applications and Reviews. – 2001. – Vol. 31, No. 3. – P. 398-404.

74. Bertuccelli L., Choi H-L., Cho P., How J. Real-time Multi-UAV Task Assignment in Dynamic and Uncertain Environments // American Institute of Aeronautics and Astronautics Guidance, Navigation, and Control Conference, Chicago, Illinois, USA, 10 – 13 August, 2009. AIAA-2009-5776. – P. 1–16.

75. Ivanov D.YA. Reshenie stroevoi zadachi v gruppe bespilotnykh kvadrokopterov // Izv. YUFU. Tekhnicheskie nauki. – 2014. – No. 8. – C. 138– 147.

76. Kapustyan S.G. Metody i algoritmy kollektivnogo upravleniya robotami pri ikh gruppovom upravlenii: dis. … d-ra. tekhn. nauk 05.02.05 / Kapustyan S.G. – Taganrog, 2008. – 376 s.

77. Dias, M. & Zlot, Robert & Kalra, Nidhi & Stentz, Anthony. (2006). Market-Based Multirobot Coordination: A Survey and Analysis. Proceedings of the IEEE. 94. 1257 - 1270.10.1109/JPROC.2006.876939.

78. W. Husheng, L. Hao and X. Renbin, "A blockchain bee colony double inhibition labor division algorithm for spatio-temporal coupling task with application to UAV swarm task allocation," in Journal of Systems Engineering and Electronics, vol. 32, no. 5, pp. 1180-1199, Oct. 2021, doi: 10.23919/JSEE.2021.000101.

79. F. Zitouni, S. Harous and R. Maamri, "A Distributed Approach to the Multi-Robot Task Allocation Problem Using the Consensus-Based Bundle Algorithm and Ant Colony System," in IEEE Access, vol. 8, pp. 27479-27494, 2020, doi: 10.1109/ACCESS.2020.2971585.

80. GA Korsah, A. Stentz и MB Dias, «Всеобъемлющая таксономия для распределения задач с несколькими роботами», Int. Дж. Робот. Рез., том. 32, нет. 12, стр. 1495–1512, октябрь 2013 г.

81. G. A. Korsah, A. Stentz and M. B. Dias, "A comprehensive taxonomy for multirobot task allocation", Int. J. Robot. Res., vol. 32, no. 12, pp. 1495-1512, Oct. 2013.

82. J. Guerrero, G. Oliver, and O. Valero, ‗‗Multi-robot coalitions formation with deadlines: Complexity analysis and solutions,‘‘ PLoS ONE, vol. 12, no. 1, pp. 1–26, Jan. 2017.

83. E. Nunes, M. Manner, H. Mitiche and M. Gini, "A taxonomy for task allocation problems with temporal and ordering constraints", Robot. Auto. Syst., vol. 90, pp. 55-70, Apr. 2017.

84. M. Zhao and D. Li, "Collaborative Task Allocation of Heterogeneous MultiUnmanned Platform Based on a Hybrid Improved Contract Net Algorithm," in IEEE Access, vol. 9, pp. 78936-78946, 2021, doi: 10.1109/ACCESS.2021.3084238.

85. H. Jiang and Y. Liang, "Online Path Planning of Autonomous UAVs for BearingOnly Standoff Multi-Target Following in Threat Environment," in IEEE Access, vol. 6, pp. 22531-22544, 2018, doi: 10.1109/ACCESS.2018.2824849.

86. Kan, X., Thayer, T., Carpin, S., & Karydis, K. (2021). Task Planning on Stochastic Aisle Graphs for Precision Agriculture. UC Merced. Report #: 2. http://dx.doi.org/10.1109/LRA.2021.3062337.

87. H. Liu, Q. Chen, N. Pan, Y. Sun and Y. Yang, "Three-Dimensional Mountain Complex Terrain and Heterogeneous Multi-UAV Cooperative Combat Mission Planning," in IEEE Access, vol. 8, pp. 197407-197419, 2020, doi: 10.1109/ACCESS.2020.3033408.


Review

For citations:


Petrenko V.I., Tebueva F.B., Antonov V.O. CLASSIFICATION OF TASKS FOR GROUP ROBOTICS FOR METHODS LABOR DIVISION. Modern Science and Innovations. 2023;(1):29-46. (In Russ.) https://doi.org/10.37493/2307-910X.2023.1.3

Views: 168


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)