Preview

Modern Science and Innovations

Advanced search

METHODS FOR β-GALACTOSIDASE IMMOBILIZATION AND THEIR USE IN LACTULOSE BIOSYNTHESIS

https://doi.org/10.37493/2307-910X.2022.4.7

Abstract

β-galactosidase is one of the most important enzymes used in the food industry, which can be applied in food, technology and environmental fields. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in the food and dairy processing industries. The enzyme can be used in both soluble and immobilized forms. Immobilization has been found to be a convenient method for rendering the enzyme thermally stable and preventing loss of enzymatic activity. The purpose of this review is to summarize and analyze information on the methods of immobilization of the β-galactosidase enzyme and the possibility of its application for the biosynthesis of lactulose. Although most industries still hydrolyze lactose with the free enzyme, immobilization of β-galactosidase is of great interest due to its potential benefits. It has been studied that immobilized enzymes can increase their stability and resistance to environmental conditions. Also, the immobilization of the enzyme makes it possible to reuse it and it can be easily separated from the product. These advantages can significantly reduce the cost of the process. There are the following methods of immobilization: physical adsorption, covalent bonding and capture method. Adsorption is the simplest immobilization method based on weak forces between the matrix and enzymes, which include van der Waals forces, hydrophobic interactions and hydrogen bonds, as well as stronger ionic interactions.Covalent bonding is the retention of enzymes on the surface of a support by forming a covalent bond. The entrapment method consists in the physical confinement of enzymes in a small space, such as in membranes or matrices. It is necessary to choose the right material for immobilization, it must be reusable and easy to extract the enzyme. At present, the production of lactulose under industrial conditions is based on the isomerization of lactose in alkaline media at high temperatures. The disadvantage of such technologies is the costly removal of catalysts, remaining lactose and reaction by-products. The solution to this problem may be the use of enzymes to produce lactulose. Under certain conditions, in the presence of fructose, β-galactosidases can catalyze the reactions of lactulose synthesis.

About the Authors

Y. Al. Tabakova
FSAEI HE "North-Caucasus Federal University"
Russian Federation

Tabakova Yuliya A., Postgraduate Student, Department of Applied Biotechnology, Faculty of Food Engineering and Biotechnology

Stavropol



S. A. Ryabtseva
FSAEI HE "North-Caucasus Federal University"
Russian Federation

Ryabtseva Svetlana A., Professor, Department of Applied Biotechnology, Faculty of Food Engineering and Biotechnology

Stavropol



M. Al. Shpak
FSAEI HE "North-Caucasus Federal University"
Russian Federation

Shpak Maria A., Associate Professor of the Department of Engineering Technology and Technological Equipment of the Engineering Institute, Ph.D.

Stavropol



S. N. Sazanova
FSAEI HE "North-Caucasus Federal University"
Russian Federation

Sazanova Serafima N., Postgraduate Student, Department of Applied Biotechnology, Faculty of Food Engineering and Biotechnology

Stavropol



References

1. Рябцева С.А. Технология лактулозы. М: ДеЛи принт, 2003. – 232 с.

2. Рябцева С.А. Физиологические эффекты, механизмы действия и применение лактулозы / С.А. Рябцева, А.Г. Храмцов, Р.О. Будкевич, Г.С. Анисимов, А.О. Чукло, М.А. Шпак // Вопросы питания. 2020. № 2. С. 6–21. DOI: 10.24411/0042-8833-2020-10012.

3. Ait-Aissa A. Lactulose: production and use in functional food, medical and pharmaceutical applications. Practical and critical review / A. Ait-Aissa, M. Aider // International journal of food science and technology. 2014. vol. 49. P. 1245-1253. DOI:10.1111/IJFS.12465

4. Alshanberi A. M. Overviewing the Application of β-Galactosidase ―Immobilized on Nanoparticles‖ in Dairy Industries / A. M. Alshanberi, M. A. Al-Shaeri, S. A. Ansari // Brazilian archives of biology and technology. 2021. vol. 64. 13 p. DOI: 10.1590/1678-4324-2021180747

5. Ansari S. A. Lactose hydrolysis by β -galactosidase immobilized on concanavalin Acellulose in batch and continuous mode / S. A. Ansari, Q. Husain // Journal of molecular catalysis B - enzymatic. 2010. vol. 63, no. 1-2, P. 68-74. DOI:10.1016/J.MOLCATB.2009.12.010

6. Belhacene K. Simple eco-friendly β-galactosidase immobilization on functionalized magnetic particles for lactose hydrolysis / K. Belhacene, E. F. Grosu, A.C. Blaga, P. Dhulster, M. Pinteala, R. Froidevaux // Environmental engineering and management journal. 2015. vol. 14, no. 3, P. 631–638. DOI:10.30638/EEMJ.2015.070

7. Bolivar M. Biotransformations in microstructured reactors: More than flowing with the stream? / M. Bolivar, J. Wiesbauer, B. Nidetzky // Trends Biotechnol. 2011. vol. 29. P. 333-342. DOI: 10.1016/j.tibtech.2011.03.005

8. Budžaki S. Waste management in the agri-food industry: The conversion of eggshells, spent coffee grounds and brown onion skins into carriers for lipase immobilization / S. Budžaki, N. Velić, M. Ostojčić, M. Stjepanović, B. Bilić Rajs, Z. Šereš, N. Maravić, J.Stanojev, V. Hessel, I. Strelec // Foods. 2022. vol. 11. 16 p. DOI:10.3390/foods11030409

9. Chapman J. Industrial applications of enzymes: Recent advances, techniques, and outlooks / J. Chapman, A. E. Ismail, C.Z. Dinu // Catalysts. 2018. vol. 8. 26 p. DOI:10.3390/catal8060238

10. Chattopadhyay S. A comparative performance evaluation of jute and eggshell matrices to immobilize pancreatic lipase / S. Chattopadhyay, R. Sen // Process biochemistry. 2012. vol. 47, no. 5, P. 749–757.

11. Chen S. C. Production of galactooligosaccharides using β-galactosidase immobilized on chitosan-coated magnetic nanoparticles with Tris (hydroxyl-methyl) phosphine as an optional coupling agent / S. C. Chen, K. J. Duan. // International journal of molecular sciences. 2015. vol. 16. P. 12499-12512. DOI:10.3390/ijms160612499

12. Chen W. Immobilization of recombinant thermostable β-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk / W. Chen, H. Chen, Y. Xia et al. // Journal of dairy science. 2009. vol. 92, no. 2, P. 491–498. DOI:10.3168/jds.2008-1618

13. de Albuquerque T.L. Immobilization of β-galactosidase in glutaraldehyde-chitosan and its application to the synthesis of lactulose using cheese whey as feedstock / T.L. de Albuquerque, S. Gomes, A.P. D‘Almeida, R. Fernández-Lafuente, L. Gonçalves, M. Rocha // Process Biochemistry. 2018. vol. 73. P. 65-73. DOI:10.1016/J.PROCBIO.2018.08.010

14. Gonawan N. Immobilized-β-galactosidase catalysed conversion of lactose on the membrane surface / N. Gonawan, A.H. Kamaruddin, M.Z.A. Bakar, K.A. Karim // Journal of physical therapy science. 2018. Vol. 29. P. 49-56. DOI:10.21315/JPS2018.29.S1.7

15. Haider T. Calcium alginate entrapped preparations of Aspergillus oryzae β galactosidase: its stability and applications in the hydrolysis of lactose / T. Haider, Q. Husain // International journal of biological macromolecules. 2007. vol. 41. no. 1. P. 72-80. DOI:10.1016/j.ijbiomac.2007.01.001

16. Haider T. Hydrolysis of milk/whey lactose by β galactosidase: a comparative study of stirred batch process and packed bed reactor prepared with calcium alginate entrapped enzyme / T. Haider, Q. Husain // Chemical engineering and processing: process intensification. 2009. vol. 48. no. 1. P. 576-580. DOI:10.1016/j.cep.2008.02.007

17. Haider T. Immobilization of β-galactosidase by bioaffinity adsorption on concanavalin A layered calcium alginate-starch hybrid beads for the hydrolysis of lactose from whey/milk / T. Haider, Q. Husain // International dairy journal. 2009. vol. 19. no. 3, P. 172-177. DOI:10.1016/J.IDAIRYJ.2008.10.005

18. Hassan M.E. Covalent immobilization of β-galactosidase enzyme onto modified alginate gel beads / M.E. Hassan, A.G. Ibrahim, H.A. El-Wahab, F.A. Hai, H. Mahmoud, G.E.A. Awad // Journal of materials and environmental science. 2018. vol. 9. P. 2483-2492.

19. Hua X. Dual-enzymatic synthesis of lactulose in organic-aqueous two-phase media / X. Hua, R. Yang, W. Zhang, Y. Fei, Z. Jin, BO. Jiang, // Food research international. 2010. vol. 43. no. 3. P. 716-722. DOI:10.1016/J.FOODRES.2009.11.008

20. Jesionowski T. Enzyme immobilization by adsorption: a review / T. Jesionowski, J. Zadarta, B. Krajewska // Adsorption. 2014. vol. 20. P. 801-821. DOI:10.1007/s10450-014-9623-y

21. Kessi E. Natural Waste Material as a Matrix for the Immobilization of Enzymes: Chicken Eggshell Membrane Powder for β-Galactosidase Immobilization / E. Kessi, J. Arias // Biotechnology and applied biochemistry. 2019. vol. 187. P. 101-115. DOI:10.1007/s12010-018-2805-4

22. Khan M. Graphene based magnetic nanocomposites as versatile carriers for high yield immobilization and stabilization of β-galactosidase / M. Khan, Q. Husain, A.H. Naqvi // RSC Advances. 2016. Issue 58. 11 p. DOI:10.1039/C6RA06960F

23. Khan M. Immobilization of β-galactosidase on surface modified cobalt/multiwalled carbon nanotube nanocomposite improves enzyme stability and resistance to inhibitor / M. Khan, Q. Husain, R. Bushra // International journal of biological macromolecules. 2017. vol. 105. P. 693-701. DOI:10.1016/j.ijbiomac.2017.07.088

24. Klein M.P. Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles / M.P. Klein, M.R. Nunes, R.C. Rodrigues, E.V. Benvenutti, T.M.H. Costa, P.F. Hertz, J.L. Ninow // Biomacromolecules. 2012. vol. 13. P. 2456-2464. DOI:10.1021/bm3006984

25. Ladero M. Kinetic modeling of lactose hydrolysis with an immobilized β- galactosidase from Kluyveromyces fragilis / M. Ladero, A. Santos, and F. Garc´ıa-Ochoa, // Enzyme and microbial technology. 2000. vol. 27. no. 8. P. 583-592. DOI: 10.1016/s0141-0229(00)00244-1

26. Mateo C. Improvement of enzyme activity, stability and selectivity via immobilization techniques / C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente // Enzyme and microbial technology. 2007. vol. 40. P. 1451-1463. DOI:10.1016/j.enzmictec.2007.01.018

27. Meller K. Microfluidic reactors with immobilized enzymes – Characterization, dividing, perspectives/ K. Meller, M. Szumski, B. Buszewski // Sensors and actuators B: Chemical. 2017. vol. 244. P.84-106. DOI:10.1016/J.SNB.2016.12.021

28. Michon C. Display of recombinant proteins at the surface of lactic acid bacteria: Strategies and applications / C. Michon, P. Langella, V.G. Eijsink, G. Mathiesen, J.M. Chatel // Microbial cell factories. 2016. vol. 15. 16 p.

29. Neto C.A.C.G. The β-galactosidase immobilization protocol determines its performance as catalysts in the kinetically controlled synthesis of lactulose / C.A.C.G. Neto, N.C.G.E. Silva, T. de Oliveira Costa, T.L. de Albuquerque, L.R.B. Gonçalves, R. Fernandez-Lafuente, M.V.P. Rocha // International journal of biological macromolecules. 2021. vol. 176. P. 468-478. DOI:10.1016/j.ijbiomac.2021.02.078

30. Nguyen H.M. Display of a β-mannanase and a chitosanase on the cell surface of Lactobacillus plantarum towards the development of whole-cell biocatalysts / H.M. Nguyen, G. Mathiesen, E.M. Stelzer, M.L. Pham, K. Kuczkowska, A. Mackenzie, J.W. Agger, V.G. Eijsink, M. Yamabhai, C.K. Peterbauer et al. // Microbial cell factories. 2016. vol. 15. 14 p. DOI: 10.1186/s12934-016-0570-z

31. Panesar P. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries. / P. Panesar, S. Kumari, R. Panesar // Enzyme research. 2010. 16 p. DOI:10.4061/2010/473137

32. Patent CN112481239 (A) Immobilized lactase with hydrophobic property and method for preparing lactulose by applying immobilized lactase/ Yang R., Wang M. ― 2021-03-12.

33. Pessela B. The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition: complete hydrolysis of lactose in dairy products / B. Pessela, C. Mateo, M. Fuentes, A. Vián, J. García, A. Carrascosa, J. Guisán, R. Fernández-Lafuente // Enzyme and microbial technology. 2003. vol. 33. no. 2-3, P. 199-205. DOI:10.1016/S0141-0229(03)00120-0

34. Pham M.L. Immobilization of β-Galactosidases on the Lactobacillus Cell Surface Using the Peptidoglycan-Binding Motif LysM / M.L. Pham, A.M. Tran, S. Kittibunchakul, T.T. Nguyen, G. Mathiesen, T.H. Nguyen // Catalysts. 2019. vol. 9. 18 p. DOI: 10.3390/catal9050443

35. Pham M.L. Immobilization of β-galactosidases from Lactobacillus on chitin using a chitin-binding domain / M.L. Pham, T. Leister, H.A. Nguyen, B.C. Do, A.T. Pham, D. Haltrich, M. Yamabhai, T.H. Nguyen, T.T. Nguyen // Journal of agricultural and food chemistry. 2017. vol. 65. P. 2965-2976. DOI: 10.1021/acs.jafc.6b04982

36. Posthuma-Trumpie G.A. A low perfusion rate microreactor for continuous monitoring of enzyme characteristics: Application to glucose oxidase / G.A. Posthuma-Trumpie, K. Venema, W.J.H. van Berkel, J. Korf // Analytical and bioanalytical chemistry. 2007. vol. 389. P. 2029-2033. DOI: 10.1007/s00216-007-1596-1

37. Rodrigues R.C. Modifying enzyme activity and selectivity by immobilization / R.C. Rodrigues, O.A. Berenguer-Murcia, R. Torres, R. Fernandez-Lafuente // Chemical society reviews. 2013. vol. 42. P. 6290–6307. DOI:10.1039/c2cs35231a

38. Rudroff F. Opportunities and challenges for combining chemo- and biocatalysis / F. Rudroff, M.D. Mihovilovic, H. Gröger, R. Snajdrova, H. Iding, U.T. Bornscheuer // Nature catalysis. 2018. vol. 1. P. 12-22. DOI:10.1038/s41929-017-0010-4

39. Šalić A. Synergy of microtechnology and biotechnology: microreactors as an effective tool for biotransformation processes / A. Šalić, B. Zelić // Food technology and biotechnology. 2018. vol. 56. P. 464-479 DOI:10.17113/ftb.56.04.18.5673

40. Satar R. Role of glutaraldehyde in imparting stability to immobilized β-galactosidase systems / R. Satar, M.A. Jafri, M. Rasool, S.A. Ansari // Brazilian archives of biology and technology. 2017. vol. 60. P. 87-92. DOI:10.1590/1678-4324-2017160311

41. Serey M. Immobilization of Aspergillus oryzae β-galactosidase in cation functionalized agarose matrix and its application in the synthesis of lactulose / M. Serey, C. Vera, C. Guerrero, A. Illanes // International journal of biological macromolecules. 2021. vol. 167. P. 1564-1574. DOI:10.1016/j.ijbiomac.2020.11.110

42. Serri N.A. High reusability of lipase immobilized on eggshells for butyl butyrate synthesis under optimum condition / N.A. Serri, L.S. Mooi // ASM science journal. 2019. vol. 12. 10 p. DOI:10.32802/ASMSCJ.2019.247

43. Silvério S.C. Biocatalytic approaches using lactulose: End product compared with substrate / S.C. Silvério, E.A. Macedo, J.A. Teixeira, L.R. Rodrigues // Comprehensive Reviews in Food Science and Food Safety. 2016. vol. 15 P. 878-896. DOI:10.1111/1541-4337.12215

44. Sitanggang A.B. Recent advances on prebiotic lactulose production / A.B. Sitanggang, A. Drews, M. Kraume // World journal of microbiology and biotechnology. 2016. vol. 32. 10 p. DOI:10.1007/s11274-016-2103-7

45. Song Y. Batch and continuous synthesis of lactulose from whey lactose by immobilized β-galactosidase / Y. Song, H. Lee, C. Park, S. Kim // Food chemistry. 2013. vol. 136. P. 689-694. DOI:10.1016/j.foodchem.2012.08.074

46. Song Y. β-Galactosidase-immobilized microreactor fabricated using a novel technique for enzyme immobilization and its application for continuous synthesis of lactulose / S. Song, H. Shin, J. Lee, C. Park, S. Kim // Food chemistry. 2012. vol. 133. P. 611-617. DOI:10.1016/J.FOODCHEM.2012.01.096

47. Taqieddin E. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules / E. Taqieddin, M. Amiji // Biomaterials. 2004. vol. 25. P. 1937-1942. DOI:10.1016/J.BIOMATERIALS.2003.08.034

48. Tavernini L.M. Development of a hybrid bioinorganic nanobiocatalyst: remarkable impact of the immobilization conditions on activity and stability of b-galactosidase / L.M. Tavernini, M.V. Olguín, M. Trench, R.A. Minervino // Molecules. 2021. vol. 26. 14 p. DOI:10.3390/molecules26144152

49. Thompson M.P. Biocatalysis using immobilized enzymes in continuous flow for the synthesis of fine chemicals / M.P. Thompson, I. Peñafiel, S.C. Cosgrove, N.J. Turner // Organic process research & development. 2019. vol. 23. P.9–18. DOI:10.1021/ACS.OPRD.8B00305

50. Torres R. A novel heterofunctional epoxy-amino sepabeads for a new enzyme immobilization protocol: Immobilization-stabilization of β-galactosidase from Aspergillus oryzae / R. Torres, C. Mateo, G. Fernandez-Lorente, C. Ortiz, M. Fuentes, J. Palomo, J. Guisán, R. Fernández-Lafuente // Biotechnology progress. 2003. vol. 19. no. 3. P. 1056-1060. DOI:10.1021/bp025771g

51. Verma M. Immobilization of β-D-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: Characterization and lactose hydrolysis / M. Verma, C.J. Barrow, J.F. Kennedy, M. Puri // International journal of biological macromolecules. 2010. vol. 50. P. 432-437. DOI:10.1016/j.ijbiomac.2011.12.029

52. Wu Z. Encapsulation of β- galactosidase from Aspergillus oryzae based on ―fish-in-net‖ approach with molecular imprinting technique / Z. Wu, M. Dong, M. Lu, Z. Li // Journal of molecular catalysis B: Enzymatic. 2010. vol. 63. no. 1-2. P. 75–80. DOI:10.1016/j.molcatb.2009.12.012

53. Wu Z. Improving the properties of β-galactosidase from Aspergillus oryzae via encapsulation in aggregated silica nanoparticles / Z. Wu, Z. Wang, B. Guan, X. Wang, Y. Zhang, Y. Xiao, B. Zhi, Y. Liu, Y. Li, Q. Huo // New journal of chemistry. 2013. vol. 37. P.3793-3797. DOI:10.1039/C3NJ00685A

54. Yovcheva T. Effect of immobilization conditions on the properties of β-galactosidase immobilized in xanthan/chitosan multilayers / T. Yovcheva, T. Vasileva, A. Viraneva, D. Cholev, I. Bodurov, M. Marudova, V. Bivolarski, I. Iliev // Journal of physics: conference series. 2012. vol. 794. P. 2456-2464. DOI:10.1088/1742-6596/794/1/012032


Review

For citations:


Tabakova Y.A., Ryabtseva S.A., Shpak M.A., Sazanova S.N. METHODS FOR β-GALACTOSIDASE IMMOBILIZATION AND THEIR USE IN LACTULOSE BIOSYNTHESIS. Modern Science and Innovations. 2022;(4):68-83. (In Russ.) https://doi.org/10.37493/2307-910X.2022.4.7

Views: 330


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)