Preview

Modern Science and Innovations

Advanced search

THE CLIMATE CHANGE OF THE CAUCASUS AS A RESULT OF THE GLOBAL WARMING

Abstract

We present a study of the potential impact of climate change on the temperature, precipitation and on some extreme weather events in the Caucasus region according to the 4.5 and 8.5 RCP scenarios. We apply a dynamic downscaling technique with a high-resolution regional model forced by the Max Planck Institute Earth System Model (MPI-ESM). In contrast to the driving MPI-ESM, there is a clear difference in the pattern of mean temperature and precipitation changes between the South and North Caucasus, with the former likely more affected by projected changes with a strong increase in temperature and decrease in precipitation. It seems that it is the better resolved Great Caucasus mountain range that causes the difference. Projected changes in seasonal mean of heavy precipitation show a similar magnitude and spatial pattern in both scenarios, being the summer increase in the magnitude of the heavy precipitation events much stronger in RCP8.5. The strong increase in heavy rain is associated to a strong decrease in precipitation. Then, the future precipitation regime will be associated to less frequent and more intense precipitation episodes in most of the region, especially in the Southern Caucasus.

About the Authors

N. S. Limareva
North-Caucasus Federal University
Russian Federation


W. . Cabos
University of Alcala
Russian Federation


A. . Izquierdo
University of Cadiz
Russian Federation


D. V. Sein
Alfred Wegener Institute, Bremerhaven, Germany
Russian Federation


References

1. Alexander L. V., X. Zhang, Т. C. Peterson, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Ill, D05109, doi:10.1029/2005JD006290.

2. Dominguez М., Romera R., Sanchez E„ Fita L„ Fernandez J., Jimenez-Guerrero P., Montalvo J. P., Cabos W. D„ Liguori G., Gaertner M. A. Precipitation and temperature extremes under present climate over Spain from a set of high resolutionRCMs.Climate Research2013;58: 149-164. DOI: 10.3354/cr01186.

3. Fields et al. (2014) Climate change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

4. Frich P., Alexander L. V., Della-Marta P., Gleason B„ Haylock M„ Klein Tank A. M. G„ Peterson T. (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193-212. doi:10.3354/cr019193.

5. Giorgi F., Mearns L. O. (1999) Introduction to special section: Regional climate modelling revisited. J Geophys Res 104:6335-6352.

6. Hagg W., Shahgedanova М., Mayer C., Lambrecht A., Popovnin V. A sensitivity study for water availability in the Northern Caucasus based on climate projections, Global and Planetary Change, 2010, 73, 3-4,161.

7. Hewitson В.С., Daron J., Crane R. G. et al. Interrogating empirical-statistical downscaling. Climatic Change (2014) 122: 539. doi: 10.1007/s 10584-013-1021-z.

8. Jacob D., Elizalde A., Haensler A., Hagemann S., Kumar P., Podzun R., Rechid D., Remedio A. R., Saeed F., Sieck K, Teich-mann C., Wilhelm C. Assessing the transferability of the regional climate model REMO to different coordinatedregional climate downscaling experiment (CORDEX) regions.Atmosphere. 2012; 3: 181-199.

9. Jacob D., Petersen J., Eggert B. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research Reg Environ Change (2014) 14: 563. doi:10.1007/sl0113-013-0499-2.

10. Jungclaus J. Н., N. Fischer, Н. Наак, К. Lohmann, J. Marotzke, D. Matei, U. Mikolajewicz, D. Notz, and J. S. von Storch (2013), Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI-Earth system model, /. Adv. Model.

11. Kotlarski S., Keuler K., Christensen О. B., Deque М., Gobiet A., Gorgen K., Jacob D., Liithi D., van Meijgaard E., Nikulin G„ Suklitsch М., Teichmann C., Vautard R., Warrach-Sagi K. (2013) Regional climate modelling on European scales: a joint standard evaluation of the Euro-CORDEX RCM ensemble. Geosci. Model Dev., 7, 1297-1333, 2014.

12. Kottek М., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World Map of the Koppen-Geiger climate classification updated. Meteorol. Z„ 15, 259-263. DOI: 10.1127/0941-2948/2006/0130.

13. Maier-Reimer E. Design of a closed boundary regional model of the Arctic Ocean (1997), Bull. Amer. Meteor. Soc.: Workshop on polar processes in global climate, 13-15 Nov, 1996, 72-73.

14. Moss R. H. et al., 2010: The next generation of scenarios for climate change research and assessment. Nature, 463,747756, doi:10.1038/nature08823.

15. Sein D. V., U. Mikolajewicz, M. Groger, I. Fast, W. Cabos, J. G. Pinto, S. Hagemann, T. Semmler, A. Izquierdo, and D. Jacob (2015), Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistiy model ROM: 1. Description and validation, J. Adv. Model. Earth Syst., 7, 268-304, doi:10.1002/2014MS000357.

16. Sillmann J. & Roeckner E. Indices for extreme events in projections of anthropogenic climate change. Climatic Change, 2008, 86: 83. doi:10.1007/sl0584-007-9308-6.

17. Schwartz P.The Art of the Long View: Planning for the Future in an Uncertain World (Doubleday, 1996).

18. Valcke S. (2013) The OASIS3 coupler: A European climate modelling community software, Geosci. Model Dev., 6, 373388, doi:10.5194/gmd-6-373-2013, 2013.


Review

For citations:


Limareva N.S., Cabos W., Izquierdo A., Sein D.V. THE CLIMATE CHANGE OF THE CAUCASUS AS A RESULT OF THE GLOBAL WARMING. Modern Science and Innovations. 2017;(2):15-26. (In Russ.)

Views: 128


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)