Preview

Modern Science and Innovations

Advanced search

THE BIOLOGICAL AND PHARMACOLOGICAL PROPERTIES OF POLYACETYLENIC COMPOUNDS OF HIGHER PLANTS

Abstract

The article presents a review devoted to natural polyacetylenes connections. The characteristic polyacetylenes which are commonly encountered in the seven families of higher plants: Apiaceae, Araliaceae, Asteraceae, Campanulaceae, Olacaceae, Pittosporaceae and Santa-laceae. Rasamrta mechanisms of their pharmacological action.

About the Authors

D. A. Konovalov
VolgGMU
Russian Federation


A. M. Nasukhova
VolgGMU
Russian Federation


V. N. Orobinskaya
North-Caucasus Federal University
Russian Federation


References

1. Dembitsky V. М., Levitsky D. О. Acetylenic terrestrial anticancer agents //NPC. 2006. Vol. 1. P. 405-429.

2. Christensen L. P., Brandt K. Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis //Journal of pharmaceutical and biomedical analysis. 2006. Vol. 41, №3. P. 683-693.

3. Christensen, L.P. Biological activities of naturally occurring acetylenes and related compounds from higher plants // Rec. Res. Dev. Phytochem. 1998. Vol. 2. P. 227.

4. Bohlmann F., Burkhardt Т., Zdero C. Naturally occurring acetylenes. London: Academic Press, 1973.

5. Гольмов В. П., Афанасьев Н. М. Природные соединения с тройными связями // Успехи химии. 1958. Т. 27, вып. 7. С. 785-816.

6. Растительные ресурсы СССР: Цветковые растения, их химический состав, использование. Сем. Asteraceae (Compositae). Л., 1993.

7. Айзенман Б. Е., Смирнов В. В., Бондаренко А. С. Фитонциды и антибиотики высших растений. Киев, 1984.

8. Гольмов В. П., Афанасьев Н. М. Природные соединения с тройными связями // Успехи химии. 1958. Т. 27, вып. 7. С. 785-816.

9. Харборн Дж. Введение в экологическую биохимию. М., 1985.

10. Ayer W. A., Craw P. Metabolites of the fairy ring fungus, Marasmius oreades. Part 2.Norsesquiterpenes, further sesquiterpenes, and agrocybin //Canadian journal of chemistry. 1989. Vol. 67, №9. P 1371-1380.

11. Ebel J. Phytoalexin synthesis: the biochemical analysis of the induction process //Annual Review of Phytopathology. 1986. Vol. 24, №1. P 235-264.

12. De Wit P, Kodde E. Induction of polyacetylenic phytoalexins in Lycopersicon esculentum after inoculation with Cladosporium fulvum (syn. Fulvia fulva) //Physiological plant pathology. 1981. Vol. 18, №2. P 143IN5-148.

13. Elgersma D. М., Weijman A. C. М., Roeymans H. J., Eijk G. W. Occurrence of Falcarinol and Falcarindiol In Tomato Plants after Infection with Verticillium albo-atrum and Characterization of Four Phytoalexins by Capillary Gas Chromatography-Mass Spectrometry //Journal of Phytopathology. 1984. Vol. 109, №3. P 237-240.

14. Imoto S., Ohta Y. Elicitation of diacetylenic compounds in suspension cultured cells of eggplant //Plant physiology. 1988. Vol. 86, №1. P 176-181.

15. Oberlies N. H., Rogers L. L., Martin J. М., McLaughlin J. L. Cytotoxic and insecticidal constituents of the unripe fruit of Persea americana //Journal of Natural Products. 1998. Vol. 61, №6. P 781-785.

16. Tietjen K. G., Matern U. Induction and suppression of phytoalexin biosynthesis in cultured cells of safflower, Carthamus tinctorius L., by metabolites of Alternaria carthami Chowdhury //Archives of biochemistry and biophysics. 1984. Vol. 229, №1. P. 136-144.

17. Nawar H. F., Kuti J. O. Wyerone acid phytoalexin synthesis and peroxidase activity as markers for resistance of broad beans to chocolate spot disease //Journal of Phytopathology. 2003. Vol. 151, №10. P 564-570.

18. Harding V K., Heale J. B. The accumulation of inhibitory compounds in the induced resistance response of carrot root slices to Botrytis cinerea //Physiological Plant Pathology. 1981. Vol. 18, №1. P 7-15.

19. Stevens K. L. Allelopathic polyacetylenes from Centaurea repens (Russian knapweed) //Journal of Chemical Ecology. 1986. Vol. 12, №6. P. 1205-1211.

20. Ishizu Т., Ohsaki Т., Tanaka N., Yano K., Kamimura H., Kurokawa S. Isolation of dehydrofalcarinol as a seed germination inhibitor from Artemisia capillaris roots // Bull Fukuoka Univ Ed. 1999. Vol.48. P67-72.

21. Guillet G., Philogene B. J., O’Meara J., Durst Т., Arnason J. T. Multiple modes of insecticidal action ofthree classes ofpolyacetylene derivatives from Rudbeckia hirta //Phytochemistry. 1997. Vol. 46, №3. P 495-498.

22. Meinwald J., Meinwald Y. C., Chalmers A. М., Eisner T. Dihydromatricaria acid: acetylenic acid secreted by soldier beetle // Science. 1968. Vol. 160, №3830. P 890-892.

23. Quilliam J. P, Stables R. Convulsant effects of cunaniol, a polyacetylenic alcohol isolated from the plant Clibadium sylvestre, on frogs and mice //Pharmacological Research Communications. 1969. Vol. 1, №1. P 7-14.

24. Clark J. B. Effect of a polyacetylenic fish poison on the oxidative phosphorylation of rat liver mitochondria //Biochemical pharmacology. 1969. Vol. 18, №1. P 73-83.

25. Towers G. H. N., Wat C. K. Biological activity of polyacetylenes //Rev. Latinoam. Quim. 1978. Vol. 9. P 162-170.

26. Christensen L. P., Lam J. Acetylenes and related compounds in Heliantheae // Phytochemistry. 1991. Vol. 30, №1. P 11-49.

27. Uwai K., Ohashi K., Takaya Y. et al. Exploring the structural basis of neurotoxicity in C17-polyacetylenes isolated from water hemlock //Journal of medicinal chemistry. 2000. Vol. 43, №23. P 4508-4515.

28. Wittstock U., Lichtnow K. H., Teuscher E. Effects of cicutoxin and related polyacetylenes from Cicuta virosa on neuronal action potentials: a comparative study on the mechanism of the convulsive action //Planta medica. 1997. Vol. 63, №02. P 120-124.

29. Uwai K., Ohashi K., Takaya Y., Oshima Y., Furukawa K., Yamagata K., Omura Т., Okuyama S. Virol A, a toxic trans-polyacetylenic alcohol of Cicuta virosa, selectively inhibits the GABA-induced Cl- current in acutely dissociated rat hippocampal CA1 neurons // Brain research. 2001. Vol. 889, №1. P. 174-180.

30. Baur R., Simmen U., Senn М., Sequin U., Sigel E. Novel plant substances acting as p subunit isoform-selective positive allosteric modulators of GABAA receptors //Molecular pharmacology. 2005. Vol. 68, №3. P. 787-792.

31. Yamazaki M., Hirakura K., Miyaichi Y., Imakura K., Chiba K., Mohri T. Effect of polyacetylenes on the neurite outgrowth of neuronal culture cells and scopolamine-induced memory impairment in mice //Biological and Pharmaceutical Bulletin. 2001. Vol. 24, №12. P. 1434-1436.

32. Pan W., Zhang Y., Xu B., Cao P., Liang G. Two new naturally occurring optical polyacetylene compounds from Torricellia angulata var intermedia and the determination of their absolute configurations //Natural product research. 2006. Vol. 20, №12. P. 10981104.

33. Deng S., Chen S. N., Yao P. et al. Serotonergic Activity-Guided Phytochemical Investigation of the Roots of Angelica s inensis // Journal of natural products. 2006. Vol. 69, №4. P. 536-541.

34. Nie B. M., Jiang X. Y., Cai J. X. et al. Panaxydol and panaxynol protect cultured cortical neurons against Ap25-35-induced toxicity //Neuropharmacology. 2008. Vol. 54, №5. P. 845-853.

35. Wang Z., Chen H., Xue Q., Lu Y. Effect of panaxynol on rat primary cultured neuron injured by H2O2 //Chin.Tradit.Herbal Drugs. 2005. Vol. 36, №1. P. 72-75.

36. Nie B. M., Yang L. M., Fu S. L., Jiang X. Y., Lu P. H., Lu Y. Protective effect of panaxydol and panaxynol on sodium nitroprusside-induced apoptosis in cortical neurons //Chemico-biological interactions. 2006. Vol. 160, №3. P. 225-231.

37. Wang Z.J., Nie B.M., Chen H.Z., Lu Y. Panaxynol induces neurite outgrowth in PC12D cells via cAMP-and MAP kinase-dependent mechanisms //Chemico-biological interactions. 2006. Vol. 159. №1. P. 58-64.

38. Hao W., Xing-Jun W., Yong-Yao C. et al. Up-regulation of M 1 muscarinic receptors expressed in CHOm 1 cells by panaxynol via cAMP pathway //Neuroscience letters. 2005. Vol. 383, №1. P. 121-126.

39. He J., Ding W. L., Li F. et al. Panaxydol treatment enhances the biological properties of Schwann cells in vitro //Chemico-biological interactions. 2009. Vol. 177, №1. P. 34-39.

40. Oka K., Saito F., Yasuhara T., Sugimoto, A. The allergens of Dendropanax trifidus Makino and Fatsia japonica Decne.et Planch. and evaluation of cross-reactions with other plants of the Araliaceae family //Contact Dermatitis. 1999. Vol. 40, №4. P. 209-213.

41. Hansen L., Hammersh0y O., Boll P. M. Allergic contact dermatitis from falcarinol isolated from Schefflera arboricola //Contact Dermatitis. 1986. Vol. 14, №2. P. 91-93.

42. Machado S., Silva E., Massa A. Occupational allergic contact dermatitis from falcarinol //Contact dermatitis. 2002. Vol. 47, №2. P. 109-125.

43. Spiridonov N.A., Arkhipov V.V., Konovalov D.A. Cytotoxicity of some russian ethnomedicinal plants and plant compounds // Phytotherapy Research. 2005. Vol. 19, № 5. P. 428-432.

44. Clifford L. J., Nair M. G., Rana J., Dewitt, D. L. Bioactivity of alkamides isolated from Echinacea purpurea (L.) Moench // Phytomedicine. 2002. Vol. 9, №. 3. P. 249-253.

45. Chen Y., Fu T., Tao T. et al. Macrophage activating effects of new alkamides from the roots of Echinacea species //Journal of natural products. 2005. Vol. 68, №5. P. 773-776.

46. Resch M., Heilmann J., Steigel A., Bauer R. Further phenols and polyacetylenes from the rhizomes of Atractylodes lancea and their anti-inflammatory activity //Planta medica. 2001. Vol. 67, №05. P. 437-442.

47. Redl K., Breu W., Davis B., Bauer R. Anti-inflammatory active polyacetylenes from Bidens campylotheca //Planta Medica. 1994. Vol. 60, №01. P. 58-62.

48. Miyazawa M., Shimamura H., Bhuva R.C. et al. Antimutagenic activity of falcarindiol from Peucedanum praeruptorum // Journal of Agricultural and Food Chemistry. 1996. Vol. 44, №11. P. 3444-3448.

49. Liu J. H., Zschocke S., Bauer R. A polyacetylenic acetate and a coumarin from Angelica pubescens f. biserrata //Phytochemistry. 1998. Vol. 49, №1. P. 211-213.

50. Kuo S. C., Teng C. M., Lee J. C. et al. Antiplatelet components in Panex ginseng //Planta medica. 1990. Vol. 56, №02. P. 164-167.

51. Fujimoto Y., Sakuma S., Komatsu S. et al. Inhibition of 15-Hydroxyprostaglandin Dehydrogenase Activity in Rabbit Gastric Antral Mucosa by Panaxynol Isolated from Oriental Medicines //Journal of pharmacy and pharmacology. 1998. Vol. 50, №9. P. 10751078.

52. Dembitsky V M. Anticancer activity of natural and synthetic acetylenic lipids //Lipids. 2006. Vol. 41, №10. P. 883-924.

53. Calzado M. A., Ludi K. S., Fiebich B. L. et al. Inhibition of NF-kB activation and expression of inflammatory mediators by polyacetylene spiroketals from Plagius flosculosus //Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression. 2005. Vol. 1729, №2. P. 88-93.

54. Christensen L. P. Acetylenes and related compounds in Anthemideae //Phytochemistry. 1992. Vol. 31, №. 1. P. 7-49.

55. Pereira R. L., Ibrahim T., Lucchetti L. et al. Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L //Immunopharmacology. 1999. Vol. 43, №1. P. 31-37.

56. Fukumaru T., Awata H., Hamma N., Komatsu T. Synthesis and bioactivity of novel acetylenic compounds //Agricultural and Biological Chemistry. 1975. Vol. 39, №2. P. 519-527.

57. Yamamoto M., Ogawa K., Morita M. et al. The herbal medicine Inchin-ko-to inhibits liver cell apoptosis induced by transforming growth factor p1 //Hepatology. 1996. Vol. 23, №3. P. 552-559.

58. Wu L.-W., Chiang Y.-M., Chuang H.-Ch. et al. The herbal medicine Inchin-ko-to inhibits liver cell apoptosis induced by transforming growth factor p1 //Hepatology. 1996. Vol. 23, №3. P. 552-559.

59. Sorensen N. A. Some naturally occurring acetylenic compounds //Proceeding of the Chemical Society. 1961. P. 98-100.

60. Imai K. The essential oil from Artemisia capillaris Thunb. // J. Pharm. Soc. Japan. 1956. Vol. 76, N 4.P. 405-408.

61. Meot-Duros L., Le Floch G., Magne C. Radical scavenging, antioxidant and antimicrobial activities of halophytic species // Journal of Ethnopharmacology. 2008. Vol. 116, №2. P. 258-262.

62. Cunsolo F., Ruberto G., Amico V, Piattelli M. Bioactive metabolites from Sicilian marine fennel, Crithmum maritimum // Journal of Natural Products. 1993. Vol. 56, №9. P. 1598-1600.

63. Lechner D., Stavri M., Oluwatuyi M. et al.The anti-staphylococcal activity of Angelica dahurica (Bai Zhi) //Phytochemistry. 2004. Vol. 65, №3. P. 331-335.

64. Chou S.C., Everngam M.C., Sturtz G., Beck J.J. Antibacterial activity of components from Lomatium californicum //Phytotherapy Research. 2006. Vol. 20, №2. P. 153-156.

65. Stavri М., Gibbons S. The antimycobacterial constituents of dill (Anethum graveolens) //Phytotherapy Research. 2005. Vol. 19, №11. P. 938-941.

66. Kobaisy М., Abramowski Z., Lermer L. et al. Antimycobacterial polyynes of Devil’s Club (Oplopanax horridus), a North American native medicinal plant //Journal of Natural Products. 1997. Vol. 60, №. 11. P 1210-1213.

67. Deng Sh., Wang Y., Inui T. et al. Anti-TB polyynes from the roots of Angelica sinensis //Phytotherapy Research. 2008. Vol. 22, №7. P. 878-882.

68. Towers G. N. H., Arnason Т., Wat C. K. et al. Phototoxic polyacetylenes and their thiophene derivatives [effects on human skin] // Contact Dermatitis. 1979. Vol. 5, №3. P. 140-144.

69. Bae E.-A., Han M.J., Baek N.-I., Kim D.-H. In Vitro Anti-Helicobacter pylori Activity of Panaxytriol Isolated from Ginseng // Arch. Pharm. Res. 2001. Vol. 24, N4. P. 297-299.

70. Zhang H., Lu Z., Tan G. T. et al. Polyacetyleneginsenoside-Ro, a novel triterpene saponin from Panax ginseng //Tetrahedron letters. 2002. Vol. 43, №6. P. 973-977.

71. Chien Sh.-Ch., Young PH., Hsu Y.-J. et al. Anti-diabetic properties of three common Bidenspilosa variants in Taiwan // Phytochemistry. 2009. Vol. 70, №10. P. 1246-1254.


Review

For citations:


Konovalov D.A., Nasukhova A.M., Orobinskaya V.N. THE BIOLOGICAL AND PHARMACOLOGICAL PROPERTIES OF POLYACETYLENIC COMPOUNDS OF HIGHER PLANTS. Modern Science and Innovations. 2017;(3):177-191. (In Russ.)

Views: 64


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)