Preview

Современная наука и инновации

Расширенный поиск

ОСНОВАННЫЕ НА ОСТАТОЧНЫХ КЛАССАХ В+ДЕРЕВЬЯ И ИХ ИСПОЛЬЗОВАНИЕ В БОЛЬШИХ БАЗАХ ЗНАНИЙ

Аннотация

В статье рассматривается использование индекса (поддерживающего хранение и обработку иерархических структур), а также параллельную обработку в области баз знаний и интеллектуальных систем. Кроме того, в статье рассматривается место индекса в интеллектуальных системах. В статье авторы выделяют недостатки, присущие базам данных, используемым в интеллектуальных системах и базах знаний. Рассматривают структуру индекса, с поддержкой параллельной обработки на GPU, и процесс кодирования ключей в нем,

Об авторах

А. В. Маликов
Северо-Кавказский Федеральный Университет
Россия


В. С. Воронкин
Северо-Кавказский Федеральный Университет
Россия


Д. М. Агаджанян
Северо-Кавказский Федеральный Университет
Россия


П. П. Тараскевич
Северо-Кавказский Федеральный Университет
Россия


Список литературы

1. J. Giarratano and G. Riley, Expert Systems: Principles and Programming, 4th ed. Williams, 2007.

2. C. Rattanaprateep and S. Chittayasothorn, “A frame-based objectrelational database expert system architecture and implementation,” in Proceedings of the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, ser. AIKED’06. Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS), 2006, pp. 327-332.

3. A. Kozlov, Intelligent information systems. Perm State Agricultural Academy, 2013.

4. V. Novikova, E. Andreeva, and D. Tuikina, Artificial intelligence and expert systems, 2007.

5. J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong, “A language facility for designing interactive database-intensive applications,” in Proceedings of the 1978 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’78. New York, NY, USA: ACM, 1978, pp. 17-17. [Online]. Available: http://doi.acm.org/10.1145/509252.509262

6. L. Hongwei and Y. Shouguang, “Application of database technique in expert system knowledge representation,” Journal of Jiangsu University of Science and Technology, 2007.

7. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, May 2008.

8. M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and M. Sarrafzadeh, “Energy-aware high performance computing with graphic processing units,” in Proceedings of the 2008 Conference on Power Aware Computing and Systems, ser. HotPower’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 11-11. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855610.1855621

9. P. Bakkum and K. Skadron, “Accelerating sql database operations on a gpu with cuda,” in Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, ser. GPGPU-3. New York, NY, USA: ACM, 2010, pp. 94-103. [Online]. Available: http://doi.acm.org/10.1145/1735688.1735706

10. T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “Gpu join processing revisited,” in Proceedings of the Eighth International Workshop on Data Management on New Hardware, ser. DaMoN ’12. New York, NY, USA: ACM, 2012, pp. 55-62. [Online]. Available: http://doi.acm.org/10.1145/2236584.2236592

11. J. Giarratano and G. Riley, Expert Systems: Principles and Programming, 4th ed. Williams, 2007.

12. C. Rattanaprateep and S. Chittayasothorn, “A frame-based objectrelational database expert system architecture and implementation,” in Proceedings of the 5th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, ser. AIKED’06. Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS), 2006, pp. 327-332.

13. A. Kozlov, Intelligent information systems. Perm State Agricultural Academy, 2013.

14. V. Novikova, E. Andreeva, and D. Tuikina, Artificial intelligence and expert systems, 2007.

15. J. Mylopoulos, P. A. Bernstein, and H. K. T. Wong, “A language facility for designing interactive database-intensive applications,” in Proceedings of the 1978 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’78. New York, NY, USA: ACM, 1978, pp. 17-17. [Online]. Available: http://doi.acm.org/10.1145/509252.509262

16. L. Hongwei and Y. Shouguang, “Application of database technique in expert system knowledge representation,” Journal of Jiangsu University of Science and Technology, 2007.

17. J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips, “Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, May 2008.

18. M. Rofouei, T. Stathopoulos, S. Ryffel, W. Kaiser, and M. Sarrafzadeh, “Energy-aware high performance computing with graphic processing units,” in Proceedings of the 2008 Conference on Power Aware Computing and Systems, ser. HotPower’08. Berkeley, CA, USA: USENIX Association, 2008, pp. 11-11. [Online]. Available: http://dl.acm.org/citation.cfm?id=1855610.1855621

19. P. Bakkum and K. Skadron, “Accelerating sql database operations on a gpu with cuda,” in Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units, ser. GPGPU-3. New York, NY, USA: ACM, 2010, pp. 94-103. [Online]. Available: http://doi.acm.org/10.1145/1735688.1735706

20. T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “Gpu join processing revisited,” in Proceedings of the Eighth International Workshop on Data Management on New Hardware, ser. DaMoN ’12. New York, NY, USA: ACM, 2012, pp. 55-62. [Online]. Available: http://doi.acm.org/10.1145/2236584.2236592

21. P. Bakkum and K. Skadron, “Accelerating sql database operations on a gpu with cuda: Extended results,” 2012.

22. S. Morishima and H. Matsutani, “Performance evaluations of documentoriented databases using gpu and cache structure,” in Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 3, Aug 2015, pp. 108-115.

23. V. Tropashko, “Nested intervals with farey fractions,” CoRR, vol. cs.DB/0401014, 2004. [Online]. Available: http://arxiv.org/abs/ cs.DB/0401014

24. “Trees in sql: Nested sets and materialized path,” 2003.

25. S. Timarchi and K. Navi, “Efficient class of redundant residue number system,” in Intelligent Signal Processing, 2007. WISP 2007. IEEEInternationalSymposiumon, Oct 2007, pp. 1-6.


Рецензия

Для цитирования:


Маликов А.В., Воронкин В.С., Агаджанян Д.М., Тараскевич П.П. ОСНОВАННЫЕ НА ОСТАТОЧНЫХ КЛАССАХ В+ДЕРЕВЬЯ И ИХ ИСПОЛЬЗОВАНИЕ В БОЛЬШИХ БАЗАХ ЗНАНИЙ. Современная наука и инновации. 2017;(3):22-28.

For citation:


Malikov A.V., Voronkin V.S., Aghajanyan D.M., Taraskevich P.P. THE B+TREES BASED ON THE SYSTEM OF RESIDUAL CLASSES AND ITS USE IN LARGE KNOWLEDGE BASES. Modern Science and Innovations. 2017;(3):22-28. (In Russ.)

Просмотров: 57


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)