Preview

Modern Science and Innovations

Advanced search

DISREGULATION CHANGES IN THE GLUTAMATERGIC SYSTEM IN CRITICALLY ILL PATIENTS, THE RELATIONSHIP WITH THE MECHANISMS OF TANATOGENESIS

Abstract

In the clinical setting was studied as glutamatergic neurotransmitter systems (based on content in the blood plasma glutamic acid and glutamine) in the development of critically ill patients the key mechanisms of tanatogenesis: systemic hypoxia, sepsis, acute renal and liver failure, and acute gastrointestinal failure.

About the Author

Elena Vladimirovna Alekseeva
Central Clinical Hospital and Out-Patient Department, Department for Presidential Affairs of Russian Federation
Russian Federation


References

1. Абрамов Ю. Б. Иммунные аспекты центральных механизмов боли // Боль. 2009. № 4. С. 2-8.

2. Александрова Е. В. Клинические синдромы дисфункции нейромедиаторных систем при тяжелой травме мозга / Е. В. Александрова, О. С. Зайцев, А. А. Потапов // Журнал неврологии и психиатрии им. С. С. Корсакова. 2015. № 7. С. 40-46.

3. Алексеева Е. В. Глутаматергическая нейромедиаторная система в регуляции моторной активности желудочно-кишечного тракта / Е. В. Алексеева, Т. С. Попова, П. С. Сальников // Патологическая физиология и экспериментальная терапия. 2015. № 3. С. 132-149.

4. Алексеева Е. В. Состояние желудочно-кишечного тракта, как предиктор неблагоприятного течения патологического процесса у реанимационных больных / Е. В. Алексеева, Г. А. Баранов, Т. С. Попова, И. Н. Пасечник // Материалы II Украинского - Российского конгресса Одесса «Боль, заболевания и интенсивная терапия» (г. Одесса, 24-26 мая 2012 г.). Одесса, 2012. № 1-Д. С. 7-10.

5. Алексеева Е. В. Кинуреновая кислота - некоторые аспекты участия в регуляции физиологических и патологических процессов (в условиях нормы, ряда заболеваний и у больных в критическом состоянии) // Кремлевская медицина. Клинический вестник. 2016. № 2. С. 50-70.

6. Алексеева Е. В. Некоторые аспекты необходимости коррекции сниженного содержания глутаминовой кислоты у больных с тяжелым сепсисом и септическим шоком // Вестник современной клинической медицины. 2016. Т. 9, вып. 6. С. 169-178.

7. Алексеева Е. В. Изменение содержания глутаминовой кислоты в плазме крови у больных в критическом состоянии при гипоксии // Вестник современной клинической медицины. 2016. Т. 9, вып. 5. С. 14-25.

8. Давыдова О. Н. Глутаматные рецепторы в клетках нервной и иммунной систем / О. Н. Давыдова, А. А. Болдырев // Анналы клинической и экспериментальной неврологии. 2007. № 4. С. 28-34.

9. Зайцев О. С. Нейрореаниматология. Выход из комы (терапия посткоматозных состояний) / О. С. Зайцев, С. В. Царенко. М.: Литасс, 2012. 120 с.

10. Поздеев В. К. Методы нейрохимических исследований в клинике / В. К. Поздеев, Н. В. Поздеев. СПб.: Реноме, 2013. 312 с.

11. Рябов Г. А. Гипоксия критических состояний. М.: Медицина, 1988. 288 с.

12. Скальный А. В. Нутрициология: основные понятия и термины: терминологический словарь / А. В. Скальный, И. А. Рудаков, С. В. Нотова [и др.]. Оренбург: ГОУ ОГУ 2005. 49 с.

13. Смирнова Г. О. Нарушения моторной функции желудочно-кишечного тракта у хирургических больных: диагностика, выбор метода лечения: автореф. дисс.. д-ра мед. наук: 14.01.17, 14.03.03. М., 2011. 49 с.

14. Сыровая А. О. Аминокислоты глазами химиков, фармацевтов, биологов: в 2-х т. / А. О. Сыровая, Л. Г. Шаповал, В. А. Макаров [и др.]. Х.: «Щедра садиба плюс», 2014. Т. 1. 228 с.

15. Albuquerque E. X. Kynurenic acid as an antagonist of а7 nicotinic acetylcholine receptors in the brain: facts and challenges / Albuquerque E. X., Schwarcz R. // Biochem Pharmacol. 2013. Vol. 85(8). Р. 1027-32.

16. Bernal W. Acute liver failure / Bernal W., Wendon J. // N Engl J Med. 2013. 369 (26). Р. 2525-34.

17. Brose S. A. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia / Brose S. A., Marquardt A. L., Golovko M. Y. // J Neurochem. 2014. May; 129 (3). Р. 400-12.

18. Brosnan J. T. Interorgan amino acid transport and its regulation // J Nutr. 2003. 133. Р. 2068-2072.

19. Descarries L. Glutamate in dopamine neurons: synaptic versus diffuse transmission / Descarries L., Bérubé-Carrière N., Riad M., Bo G.D. [et al] // Brain Res Rev. 2008. Aug; 58 (2). Р.290-302.

20. Dryer S. E. Glutamate receptors in the kidney // Nephrol Dial Transplant. 2015. Oct; 30 (10). Р. 1630-8.

21. Fan J. Fatty acid labeling from glutamine in hypoxia can be explained by isotope exchange without net reductive isocitrate dehydrogenase (IDH) flux / Fan J., Kamphorst J. J., Rabinowitz J. D., Shlomi T. // J Biol Chem. 2013. Oct. 25; 288 (43). Р. 31363-9.

22. Fan J. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia / Fan J., Kamphorst J. J., Mathew R. [et al] // Mol. Syst. Biol. 2013. 9. Р. 712.

23. Giaronia С. Evidence for a glutamatergic modulation of the cholinergic function in the human enteric nervous system via NMDA receptors / Giaronia С. Zanettia E., Chiaravallib A. M. [et al] // Eur J Pharmacol. 2003. 476 (1-2). Р. 63-9.

24. Hnasko T. S. Neurotransmitter corelease: mechanism and physiological role // Hnasko T. S., Edwards R. H. Annu Rev Physiol. 2012. Vol74. P. 225-43.

25. Julio-Pieper M. Regulation ofthe brain-gut axis by group III metabotropic glutamate receptors / Julio-Pieper M., O'Connor R. M., Dinan T. G., Cryan J. F. // Eur J Pharmacol. 2013. Jan 5; 698 (1-3). Р.19-30.

26. Karakula-Juchnowicz H. New prospects for antipsychotic treatment - the role of the kynurenine pathway / Karakula-Juchnowicz H., Flis M., Szymona K. [et al] // Psychiatr Pol. 2014. Nov-Dec. 48(6). Р. 1167-77.

27. Kaszaki J. Kynurenines and intestinal neurotransmission: the role of N-methyl-D-aspartate receptors / Kaszaki J., Erces D., Varga G. [et al] // J Neural Transm. 2012. 119 (2). Р. 211-23.

28. Kirchgessner A. L. Glutamate in the enteric nervous system / A.L. Kirchgessner // Curr Opin Pharmacol. - 2001. 1(6). Р. 591-6.

29. Metallo C. M. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia / Metallo C. M., Gameiro P. A., Bell E. L. [et al] // Nature. 2011. Nov 20; 481 (7381). Р. 380-4.

30. Nissim I. Newer aspects of glutamine/glutamate metabolism: the role of acute pH changes // American Journal of Physiology -Renal Physiology. 1999. Vol. 277. Р. 493-497.

31. Poeze M. Decreased plasma glutamate in early phases of septic shock with acute liver dysfunction is an independent predictor of survival / Poeze M., Luiking Y.C., Breedveld P. [et al] // Clin Nutr. 2008. Aug; 27 (4). Р. 523-30.

32. Robinson M. M. Novel mechanism of inhibition of rat kidney-type glutaminase by bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) / Robinson M. M., McBryant S. J., Tsukamoto T. [et al] // Biochem J. 2007. Sep 15; 406 (3). Р. 407-14.

33. Ruth M. R. The immune modifying effects of amino acids on gut-associated lymphoid tissue / Ruth M. R., Field C. J. // J Anim Sci Biotechnol. 2013. 4 (1). 27.

34. Schwarcz R. Kynurenines in the mammalian brain: when physiology meets pathology / Schwarcz R., Bruno J. P., Muchowski P. J., Wu H. Q. // Nat Rev Neurosci. 2012. Jul; 13(7). 465-77.

35. Sharma A. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review // J Biomed Sci. 2015. Oct 22; 22 - 93.

36. Soeters P. B. Have we enough glutamine and how does it work? A clinician's view. Soeters P. B., Grecu I. // Ann. Nutr. Metab. 2012. Vol. 60 (1). P. 17-26.

37. Stone T. W. Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection / Stone T. W., Forrest C. M., Darlington L. G. // FEBS J. 2012. Apr; 279 (8). Р. 1386-97.

38. Stone T. W. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders / Stone T. W., Darlington L. G. // Br J Pharmacol. 2013. Jul; 169 (6). Р. 1211-27.

39. Taylor L. Glutamine metabolism: Role in acid-base balance / Taylor L., Curthoys N. P. // Biochem Mol Biol Educ. 2004. Sep; 32 (5). Р. 291-304.

40. Tremolizzo L. Assessing Glutamatergic Function and Dysfunction in Peripheral Tissues / Tremolizzo L., Sala G., Zoia C. P., Ferrarese C. // Current Medicinal Chemistry. 2012. 19. Р. 1310-1315.

41. Trudeau L. E. Glutamate co-transmission as an emerging concept in monoamine neuron function // J Psychiatry Neurosci. 2004. Jul; 29 (4). Р. 296-310.

42. Yoneda Y. Glutamic acid as a universal extracellular signal // Nihon Shinkei Seishin Yakurigaku Zasshi. 2015. Aug; 35 (4). Р. 81-8.


Review

For citations:


Alekseeva E.V. DISREGULATION CHANGES IN THE GLUTAMATERGIC SYSTEM IN CRITICALLY ILL PATIENTS, THE RELATIONSHIP WITH THE MECHANISMS OF TANATOGENESIS. Modern Science and Innovations. 2017;(1):161-171. (In Russ.)

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)