Preview

Modern Science and Innovations

Advanced search

ADAPTATION OF THE BACK PROPAGATION ERROR ALGORITHM FOR A CONVOLUTIONAL NEURAL NETWORK WITH SECOND-ORDER NEURONS AND DYNAMIC RECEPTIVE FIELDS

Abstract

The article suggests the adaptation of the back propagation error algorithm for a convolutional neural network with dynamic receptive fields and second-order neurons. A pattern recognition experiments shows that the second-order neurons combination and dynamic receptive fields allows to reduce the generalization error are described.

About the Authors

Roman Mikhailovich Nemkov
North-Caucasus Federal University
Russian Federation


Oksana Stanislavovna Mezentseva
North-Caucasus Federal University
Russian Federation


Dmitriy Viktorovich Mezentsev
North-Caucasus Federal University
Russian Federation


References

1. Назаров Л. Е. Нейросетевые алгоритмы обнаружения, классификации и распознавания объектов на изображениях / Л. Е. Назаров, Н. С. Томашевич, А. Н. Балухто // Нейрокомпьютеры в прикладных задачах обработки изображений. Кн. 25. 2007. С. 25-54.

2. Nemkov R., Mezentseva O., Mezentsev D. Using of a Convolutional Neural Network with Changing Receptive Fields in the Tasks of Image Recognition / Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16), Volume 451 of the series Advances in Intelligent Systems and Computing. pp. 15-23.

3. Лагунов Н. А. Выделение и распознавание объектов с использованием оптимизированного алгоритма селективного поиска и сверточной нейронной сети высокого порядка // Фундаментальные исследования. 2015. №5. С. 511-516.

4. Немков Р М. Метод синтеза параметров математической модели сверточной нейронной сети с расширенным обучающим множеством // Современные проблемы науки и образования, 2015. № 1. URL: http://www.science-education.ru/125-19867/

5. NYU Object Recognition Benchmark (NORB) [электронный ресурс] // URL: www.cs.nyu.edu/~yldab/data/norb-vL0/ (дата обращения 12.12.2016).

6. Nemkov R. Dynamical Change of the Perceiving Properties of Neural Networks as Training with Noise and Its Impact on Pattern Recognition // Young Scientists’ International Workshop on Trends in Information Processing (YSIP). 2014. URL: http://ceur-ws.org/ Vol-1145/paper4.pdf

7. Bengio Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning, vol. 2, issue 1, 2009,. pp. 1-127.

8. Nemkov R. M. Synthesis method of mathematical model parameters of the convolutional neural network with extended training set. URL: http://www.science-education.ru/125-19867/ (30.01.2016).

9. Nemkov R., Mezentseva O. The Use of Convolutional Neural Networks with Non-specific Receptive Fields. The 4th International Scientific Conference: Applied Natural Sciences. Novy Smokovec, 2013. pp. 284-289.

10. Nemkov R. M., Mezentseva O. S. Dynamical change of the perceiving properties of convolutional neural networks and its impact on generalization. Neurocomputers: development and application, 2015, no. 2, pp. 12-18.


Review

For citations:


Nemkov R.M., Mezentseva O.S., Mezentsev D.V. ADAPTATION OF THE BACK PROPAGATION ERROR ALGORITHM FOR A CONVOLUTIONAL NEURAL NETWORK WITH SECOND-ORDER NEURONS AND DYNAMIC RECEPTIVE FIELDS. Modern Science and Innovations. 2018;(2):50-55. (In Russ.)

Views: 109


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)