Preview

Modern Science and Innovations

Advanced search

INFORMATICS, COMPUTER ENGINEERING AND MANAGEMENT

https://doi.org/10.37493/2307-910X.2021.1.1

Abstract

The paper considers several combinatorial and optimization problems in Big Data systems, including the computational complexity of finding functional dependencies in the subject area and constructing a data schema, the number of combinations for recovering traversing paths on data schema is calculated, the maximum number of B + tree indexes is calculated. Algorithms for solving these problems are estimated by non-polynomial complexity functions and, in practice, heuristic methods of their optimization are usually used. An analytical function of the acceleration ofparallel data processing operations on the number ofprocessors is constructedwhich can be used in the tasks of optimal configuration ofparallel execution plans of queries to the database.A mathematical model for calculating the number ofprocessors and the level of acceleration based on the analysis of data statistics at the stages of compilation and running of queries is presented.

About the Author

A. V. Malikov
North-Caucasus Federal University
Russian Federation


References

1. MSSQLDocumentation [Электронный ресурс]. Режим доступа: https://docs.microsoft.com/ru-ru/sql/relational-databases/reading-pages?view=sql-server-ver15

2. DongjingM. Computational Complexity And Algorithms For Dirty Data Evaluation And Repairing. Dissertation, Georgia State University, 2018.

3. Sanjeev A., Boaz B. Computational Complexity: A Modern Approach. Cambridge University Press, 2009.

4. TowD. SQL Tuning. O'REILLY, 2003.

5. DateC.J. An introduction to database system. 8th edition, Addison-Wesley, 2004.

6. Параллельнаяобработкаинформации» впятитомах. Том 3. Вычислительные системы, структуры и среды для решения задач большой размерности / под ред. д.т.н. В.В. Грицыка. Киев: Наукова Думка, 1986.

7. Девитт Д.,Грэй Д. Параллельные системы баз данных: будущее высоко эффективных систем баз данных // СУБД. Открытые системы.- 1995.- № 2.

8. Чефранов А.Г., Маликов А.В.Аналитическая зависимость производительности параллельных вычислительных систем от числа процессоров // Известия высших учебных заведений. Северо-Кавказский регион. Технические науки. - 2003.- Т. 2.


Review

For citations:


Malikov A.V. INFORMATICS, COMPUTER ENGINEERING AND MANAGEMENT. Modern Science and Innovations. 2021;(1):8-14. https://doi.org/10.37493/2307-910X.2021.1.1

Views: 734


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)