Microstrip antennas for a drone-mounted bistatic radar system
https://doi.org/10.37493/2307-910X.2025.4.2
Abstract
Introduction. This article examines the operational characteristics of a bistatic radar system installed on an unmanned aerial vehicle (UAV) and substantiates the selection of an optimal antenna- feeder system for it. The importance of considering the influence of the UAV body, made of conductive material, on the antenna directivity and polarization of emitted signals is emphasized. A lack of sufficient information and recommendations regarding the selection of an antenna-feeder system for a bistatic radar system installed on UAVs is noted, which determines the relevance of this study.
Goal. The objective of this work is to develop requirements for the selection, calculation, and modeling of an antenna-feeder system that meets operating conditions within a bistatic radar system. Materials and methods. The stages of development and testing of the selected solution are presented, including determining the technical requirements for the antenna-feeder system, assessing the applicability of existing antenna designs, calculating and manufacturing prototypes, and conducting experimental studies. The specialized Antenna Designer software package in MATLAB was used to model and optimize the characteristics of microstrip antennas.
Results and discussion. The results of the studies revealed that microstrip antennas provide unidirectional radiation, stable electrical parameters across the operating frequency range, and easy manufacturing. The design advantages of microstrip antennas identified during the studies are described.
Conclusion. A conclusion is reached regarding the feasibility of using microstrip antennas for the tasks being solved, and a direction for further research related to the development of two-element antenna arrays to improve the efficiency of bistatic radar systems is proposed.
About the Author
V. D. GoncharovРоссия
Vladislav D. Goncharov – Second-year postgraduate in the Department of Digital, Robotics Systems and Electronics, Institute of Advanced Engineering, Junior Researcher at the Interdisciplinary Research and Educational Center for Agricultural Technologies of the Engineering Development Center “Center for New Solutions”, Federal Autonomous Educational Institution of Higher Education, North Caucasus FU, Scopus ID: 58265813700, Researcher ID: IUN-5147-2023.
1, Pushkin st., Stavropol, 355017
References
1. Bazhenov A., Sagdeev K., Goncharov D., Grivennaya N. Bistatic system for radar sensing of soil moisture. Engineering for Rural Development: 20. 2021. Vol. 20. P. 919–925. https://doi.org/10.22616/ERDev.2021.20.TF207
2. Linets G. I., Bazhenov A. V., Grivennaya N. V., Goncharov V. D. Radiolokatsionnoe izmerenie kompleksnoi otnositel'noi diehlektricheskoi pronitsaemosti i ob"emnoi vlazhnosti pochvy. Radioehlektronnye ustroistva i sistemy dlya infokommunikatsionnykh tekhnologii ("REHUS-IT 2023"): Doklady Vserossiiskoi konferentsii, posvyashchennoi "Dnyu radio", Moskva, 07–09 iyunya 2023 goda. Moskva: RNTOREhIS im. A.S. Popova, 2023. S. 79-83.
3. Voskresenskii D. I., Stepanenko V. I., Filippov V. S. Ustroistva SVCH i antenny. Proektirovanie fazirovannykh antennykh reshetok: uchebnoe posobie dlya VUZov; pod obshch. red. D. I. Voskresenskogo. M.: Izd-vo Radiotekhnika. 2003. 632 s.
4. Sazonov D.M. Antenny i ustroistva SVCH. Ucheb. dlya radiotekhnich. spets. vuzov; M.: Izd-vo Vysshaya shkola. 1988. 432 s.
5. Balanis C. A. Antenna Theory: Analysis and Design: Book. New Jersey: Wiley-Interscience, 2005. 1136 p.
6. Petrov A. S., Makeev V. V. Analiz kharakteristik mikropoloskovykh antenn v detsimetrovom diapazone // Radiotekhnika i ehlektronika. 2013. T. 58. №. 3. S. 213–213.
7. Volakis J.L. Antenna Engineering Handbook. New York: McGraw-Hill, 2007. 1755 r.
8. Panchenko B. A., Nefedov E. I. Mikropoloskovye antenny; M.: Izd-vo Radio i svyaz'. 1986. 144 s.
9. Kharin YU. S. Analiz primeneniya poloskovykh i mikropoloskovykh antenn v sistemakh svyazi spetsial'nogo naznacheniya. Aktual'nye voprosy ehkspluatatsii sistem okhrany i zashchishchennykh telekommunikatsionnykh sistem. 2018. S. 196–197.
10. Gusinskii A. V., Svirid M. S., Kondrashov D. A., Kopshai A. A., Bulavko D. G., Lisov D. A. Modelirovanie mikropoloskovoi antenny radiovysotomera dlya letatel'nogo apparata. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radioehlektroniki. 2021. T. 19. №. 5. S. 5–12.
11. Savochkin A. A., Chuyan V. A. Razrabotka i issledovanie mikropoloskovoi antenny MIMO. Modern Science. 2020. T. 7. №. 2. S. 392–396.
12. James J. R., Hall P. S. Handbook on Microstrip Antennas. London: Peter Peregrinus Ltd, 1989. 1311 p.
13. Kao-Cheng H., Edwards D. J. Millimetre Wave Antennas for Gigabit Wireless Communications: A Practical Guide to Design and Analysis in a System Context. JohnWiley & Sons Ltd, 2008. 271 p.
14. Merkulov V. I., Gandurin V. A., Drogalin V. V. Aviatsionnye sistemy radioupravleniya: uchebnik dlya voennykh i grazhdanskikh VUZov. M.: VVIA im. N.E. Zhukovskogo. 2008.
Review
For citations:
Goncharov V.D. Microstrip antennas for a drone-mounted bistatic radar system. Modern Science and Innovations. 2025;(4):22-36. https://doi.org/10.37493/2307-910X.2025.4.2
JATS XML
















