Preview

Modern Science and Innovations

Advanced search

Classification analysis of modern bioreactor systems (review). Part 1. Classification of bioreactors by design parameters

https://doi.org/10.37493/2307-910X.2025.1.9

Abstract

Bioreactors are an integral part of biotechnological processes. Currently, the scope of their application is expanding and covers many areas of human activity. Bioreactor systems are widely used in biotechnological processes for the production of microorganisms, enzymes, cell lines, viruses, recombinant proteins, as well as various products of the food, cosmetic, pharmaceutical, medical, chemical and agricultural industries. It is worth noting that in addition to being used in production, these devices are used in wastewater and soil treatment processes from various waste at production facilities. Due to the active use of bioreactors, in order to optimize production processes and reduce operating costs, new highly efficient automated devices with a variety of functions are being developed using modern automation technologies, artificial intelligence and 3-D printing. As a result of the presented problem, many scientists and specialists in the scientific field and in production face difficulties in choosing the optimal equipment for performing research and production processes, since large amounts of dispersed data significantly complicate the selection process and require large time and financial resources to search and analyze the necessary information. To solve the problem of data fragmentation, an analysis of scientific papers by domestic and foreign authors on existing types of bioreactors and their classification was carried out. Based on the results of the analysis, this paper presents the first part of the structured information on the classification of bioreactors related to the design features of the devices – classification by design type and appearance. The characteristics of the existing types of bioreactors are given with a description of their structural components and the principle of operation, the advantages and disadvantages of the devices are noted, and examples of their use in various industrial sectors, including in the food industry, are presented. The data, structured based on the results of the analysis of scientific works by domestic and foreign authors, presented in this work, can be used as an auxiliary source of information during the educational process, as well as when performing research work. It is worth noting that the information collected will be used by the authors in the future when conducting a system analysis to develop an information and analytical complex in the field of biotechnological processes using bioreactors.

About the Authors

A. A. Dosaev
D.I. Mendeleev Russian University of Chemical Technology
Russian Federation

Alexander A. Dosaev, Postgraduate Student

Moscow

Researcher ID: LTZ-9845-2024



R. R. Safarov
D.I. Mendeleev Russian University of Chemical Technology
Russian Federation

Ruslan R. Safarov, Cand. Sci. (Engineer.), Director of the department

Department of the Sсience and Technical Policy

Moscow



N. V. Menshutina
D.I. Mendeleev Russian University of Chemical Technology
Russian Federation

Natalia V. Menshutina, Dr. Sci. (Engineer.), Professor, Head of the Department

Department of Chemical and Pharmaceutical Engineering

Moscow

Scopus ID: 6602274789, Researcher ID: G-2802-2014



References

1. Dosaev AA, Menshutina NV. Systems analysis of biotechnological processes. In Actual biotechnology : Proceedings of the XI International scientific and practical conference "Biotechnology: Science and Practice", Novomikhaylovsky, September 11-14, 2023. Novomikhaylovsky: Voronezh; 2023;37. Available from: https://umo19.ru/data/documents/no3_2023.pdf#page=37 [Accessed 11 March 2025]. (In Russ.).

2. Agrawal K, Verma P. Biotechnological advances in biorefinery. Singapore: Springer; 2024. 391 p. Available from: https://link.springer.com/book/10.1007/978-981-97-5544-8 [Accessed 11 March 2025].

3. Mangas-Florencio L, Herrero-Gómez A, Eills J, Azagra M, Batlló-Rius M, Marco-Rius I. A DIY bioreactor for in situ metabolic tracking in 3D cell models via hyperpolarized 13C NMR spectroscopy. Analytical Chemistry. 2025;97(3):1594-1602. doi: 10.1021/acs.analchem.4c04183

4. Gaugler L, Hofmann S, Schlüter M, Takors R. Mimicking CHO large-scale effects in the single multicompartment bioreactor: A new approach to access scale-up behavior. Biotechnology and bioengineering. 2024;121(4):1243-1255. doi: 10.1002/bit.28647

5. Ren C, Zhang S, Li Q, Jiang Q, Li Y, Gao Z, Cao W, Guo L. Pilot composite tubular bioreactor for outdoor photo-fermentation hydrogen production: from batch to continuous operation. Bioresource Technology. 2024;401:130705. doi: 10.1016/j.biortech.2024.130705

6. Serra D, Cruciani S, Garroni G, Sarais G, Kavak FF, Satta R, Montesu MA, Floris M, Ventura C, Maioli M. Effect of Helichrysum italicum in promoting collagen deposition and skin regeneration in a new dynamic model of skin wound healing. International Journal of Molecular Sciences. 2024;25(9):4736. doi: 10.3390/ijms25094736

7. Ma Y, Liu T, Yuan Z, Guo J. Single cell protein production from methane in a gas-delivery membrane bioreactor. Water Research. 2024;259:121820. doi: 10.1016/j.watres.2024.121820

8. Palladino F, Marcelino PRF, Schlogl AE, José AHM, Rodrigues RDCLB, Fabrino DL, Santos IJB, Rosa CA. Bioreactors: applications and Innovations for a sustainable and healthy future—a critical review. Applied Sciences. 2024;14(20):9346. doi: 10.3390/app14209346

9. Ramesh S, Deep A, Tamayol A, Kamaraj A, Mahajan C, Madihally S. Advancing 3D bioprinting through machine learning and artificial intelligence. Bioprinting. 2024;38:e00331. doi: 10.1016/j.bprint.2024.e00331

10. Shevtsov AA, Drannikov AV, Ponomarev AV, Shabunin EA. Current trends for improving the design of membrane devices for photoautotrophic biosynthesis is light dependent microorganisms. In Proceedings of the Voronezh State University of Engineering Technologies. 2016;(3):68-76. (In Russ.). doi: 10.20914/2310-1202-2016-3-68-76 (In Russ.).

11. Voinov NA, Nikolaev AN, Voinova ON. Hydrodynamics, heat and mass transfer in film bioreactors. Khimiya Rastitel'nogo Syr'ya. 2009;(4):183-193. Available from: https://cyberleninka.ru/article/n/gidrodinamika-teploi-massoperenos-v-plenochnyh-bioreaktorah [Accessed 11 March 2025]. (In Russ.).

12. Ismailov AE, Kenzhabaeva N, Mukhammadzhonov A, Abdukarimov O, Otakulov D, Eshmuradova N, Mirzarakhmetova DT. Cultivation of Dunaliella salina. In Technology of organic substances : Proceedings of the 85<sup>th</sup> scientific and technical conference of faculty, researchers and postgraduate students (with international participation), Minsk, February 1-13, 2021, Minsk: Minsk; 2021;295-298. Available from: https://elib.belstu.by/handle/123456789/33236 [Accessed 11 March 2025]. (In Russ.).

13. Santek B, Ivancic M, Horvat P, Novak S, Maric V. Horizontal tubular bioreactors in biotechnology. Chemical and Biochemical Engineering Quarterly. 2006;20(4):389-399. Available from: https://hrcak.srce.hr/clanak/9338 [Accessed 11 March 2025].

14. Tapia F, Wohlfarth D, Sandig V, Jordan I, Genzel Y, Reichl U. Continuous influenza virus production in a tubular bioreactor system provides stable titers and avoids the “von Magnus effect”. PLoS One. 2019;14(11):e0224317. doi: 10.1371/journal.pone.0224317

15. Zarei Z, Malekshahi P, Morowvat MH, Trzcinski AP. A review of bioreactor configurations for hydrogen production by cyanobacteria and microalgae. International Journal of Hydrogen Energy. 2024;49:472-495. doi: 10.1016/j.ijhydene.2023.09.108

16. Pavlečić M, Novak M, Trontel A, Marđetko N, Tominac VP, Dobrinčić A, Kralj M, Šantek B. The production of water kefir drink with the addition of dried figs in the horizontal rotating tubular bioreactor. Foods. 2024;13(17):2834. doi: 10.3390/foods13172834

17. Schwan RF, Joshi VK, Dias DR. Bioreactor technology in food processing. Boca Raton: CRC Press; 2024. 648 p. doi: 10.1201/9780429424236

18. Sharma R, Harrison STL, Tai SL. Advances in bioreactor systems for the production of biologicals in mammalian cells. ChemBioEng Reviews. 2022;9(1):42-62. doi: 10.1002/cben.202100022

19. Bokelmann C, Bromley J, Takors R. Pros and cons of airlift and bubble column bioreactors: How internals improve performance. Biochemical Engineering Journal. 2024;213:109539. doi: 10.1016/j.bej.2024.109539

20. Petrov EB, Mironov VV, Sidorova VYu. The comparative analysis of existing inventions of installations for the multipotent. Machinery and technologies in livestock. 2017;4(28):21-28. Available from: https://cyberleninka.ru/article/n/sravnitelnyy-analiz-suschestvuyuschih-izobreteniy-ustanovok-dlya-kultivirovaniya-multipotentnyh-mezenhimalnyh-stvolovyh-kletok-mmsk [Accessed 11 March 2025]. (In Russ.).

21. Palladino F, Marcelino PRF, Schlogl AE, José ÁHM, Rodrigues RDCLB, Fabrino DL, Santos IJB, Rosa C. A. Bioreactors: applications and innovations for a sustainable and healthy future - A critical review. Applied Sciences. 2024;14(20):9346. doi: 10.3390/app14209346 [Accessed 11 March 2025].

22. Soccol CR, Molento CFM, Reis GG, Karp SG. Cultivated meat: Technologies, commercialization and challenges. Cham: Springer Nature Switzerland; 2024. 441 p. doi: 10.1007/978-3-031-55968-6

23. Ferreira P, Lopes M, Belo I. Use of pressurized and airlift bioreactors for citric acid production by Yarrowia lipolytica from crude glycerol. Fermentation. 2022;8(12):700. doi: 10.3390/fermentation8120700

24. Acharyya PP, Sarma M, Kashyap A. Recent advances in synthesis and bioengineering of bacterial nanocellulose composite films for green, active and intelligent food packaging. Cellulose. 2024;31(12): 7163-7187. doi: 10.1007/s10570-024-06023-3

25. Afanasyev VN, Maksimov DA, Afanasyev AV. Determination of design parameters of a drum-type bioreactor. Technologies and technical means of mechanized production of crop and livestock products. 2000;71:148-155. Available from: https://www.elibrary.ru/download/elibrary_22563476_62169625.pdf [Accessed 11 March 2025]. (In Russ.).

26. Mitchell DA, Berovič M, Krieger N. Solid-state fermentation bioreactors: fundamentals of design and operation. Heidelberg: Springer Berlin; 2006. 448 p. doi: 10.1007/3-540-31286-2

27. Larroche C, Ángeles Sanromán M, Du G, Pandey A. Current developments in biotechnology and bioengineering: Bioprocesses, bioreactors and controls. Amsterdam: Elsevier; 2017. 821 p. Available from: https://www.academia.edu/32420126/CurrentDevelopments_in_Biotechnology_Bioengineering_pdf [Accessed 11 March 2025].

28. Hardin MT, Howes T, Mitchell DA. Mass transfer correlations for rotating drum bioreactors. Journal of biotechnology. 2002;97(1):89-101. doi: 10.1016/S0168-1656(02)00059-7

29. Sevda S, Chauhan G. Solid waste management: Volume 2: Biological/Biochemical Approaches. Boca Raton: CRC press; 2024. 256 p. doi: 10.1201/9781003229919

30. Wang W, Ma Q, Zhang F, Tang Y, Wang J, Sun J. Changes in bioactive and volatile aroma compounds in vinegar fermented in a rotary drum bioreactor. Journal of Food Composition and Analysis. 2023;121:105345. doi: 10.1016/j.jfca.2023.105345

31. Gervasi T, Mandalari G. Valorization of agro-industrial orange peel by-products through fermentation strategies. Fermentation. 2024;10(5):224. doi: 10.3390/fermentation10050224

32. El-Mansi EMT, Nielsen J, Mousdale D, Carlson RP. Fermentation microbiology and biotechnology. Boca Raton: CRC press; 2018. 440 p doi: 10.1201/9780429506987

33. Dabaghi S, Ataei SA, Taheri A. Performance analysis of a laboratory scale rotating drum bioreactor for production of rhamnolipid in solid-state fermentation using an agro-industrial residue. Biomass conversion and biorefinery. 2023;13(13):11513-11520. doi: 10.1007/s13399-021-02113-5

34. Rogova EA, Alashkevich YuD, Kozhukhov VA, Lapin IR, Kiselev EG. The state and prospects of improving the methods of obtaining and using bacterial cellulose (review). Khimiya Rastitel'nogo Syr'ya. 2022;(4):27-46. doi: 10.14258/jcprm.20220411373 (In Russ.).

35. Ju N, Wang SS. Continuous production of itaconic acid by Aspergillus terreus immobilized in a porous disk bioreactor. Applied microbiology and biotechnology. 1986;23:311-314. doi: 10.1007/BF00257025

36. Sarkar S, Mukherjee J, Roy D. Antibiotic production by a marine isolate (MS 310) in an ultra-low-speed rotating disk bioreactor. Biotechnology and bioprocess engineering. 2009;14:775-780. doi: 10.1007/s12257-009-0126-8

37. Dermani RK, Babaeipour V, Jabbari F, Khanchezar S. Design and development of a novel tray bioreactor for optimization of bacterial nano-cellulose production. Available from: https://www.researchsquare.com/article/rs-3822103/v1 [Accessed 11 March 2025].

38. Barrios-Nolasco A, Castillo-Araiza CO, Huerta-Ochoa S, Reyes-Arreozola MI, Buenrostro-Figueroa JJ, Prado-Barragán LA. Evaluating the performance of Yarrowia lipolytica 2.2 ab in solid-state fermentation under bench-scale conditions in a packed-tray bioreactor. Fermentation. 2024;10(7):344. doi: 10.3390/fermentation10070344

39. Mitchell DA, von Meien OF, Krieger N. Recent developments in modeling of solid-state fermentation: Heat and mass transfer in bioreactors. Biochemical engineering journal. 2003;13(2-3):137-147. doi: 10.1016/S1369-703X(02)00126-2

40. Tran DPH, You SJ, Bui XT, Wang YF, Ramos A. Anaerobic membrane bioreactors for municipal wastewater: Progress in resource and energy recovery improvement approaches. Journal of environmental management. 2024;366:121855. doi: 10.1016/j.jenvman.2024.121855

41. Ngo HH, Guo W, Surampalli RY, Zhang TC. Green technologies for sustainable water management. Reston: American Society of Civil Engineers; 2016. 1083 p. doi: 10.1061/9780784414422.ch15

42. Han J, Xie N, JuJ, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor : A review. Chemosphere. 2024;365:143091. doi: 10.1016/j.chemosphere.2024.143091

43. Trukhina MG, Pelmeneva ND. Membrane bioreactors: foreign experience. Izvestiya vuzov. Investitsii. Stroitelstvo. Nedvizhimost. 2022;12((2)(41)):224-231. doi: 10.21285/2227-2917-2022-2-224-231 (In Russ.).

44. Zidan OD. Use of a membrane bioreactor as effective equipment in the food industry. In International conference on globalization, enterprises, management and economic development, Seattle, January 20, 2021, Seattle: Seattle; 2021; 79-85. https://elibrary.ru/item.asp?id=44605358 (In Russ.).

45. Xiao K, Liang S, Wang X, Chen C, Huang X. Current state and challenges of full-scale membrane bioreactor applications : A critical review. Bioresource technology. 2019;271:473-481. doi: 10.1016/j.biortech.2018.09.061

46. Ge C, Selvaganapathy PR, Geng F. Advancing our understanding of bioreactors for industrial-sized cell culture: Health care and cellular agriculture implications. American journal of physiology-cell physiology. 2023;325(3):580-591. doi: 10.1152/ajpcell.00408.2022

47. Supotnitsky MV, Elapov AA, Merkulov VA, Borisevich IV, Klimov VI, Mironov AN. Technological processes used in the production of biomedical cell products, assessment of their quality and standardization. Novosti meditsiny i farmatsii = News of medicine and pharmacy. 2015;(16):24-28. Available from: https://www.elibrary.ru/download/elibrary2565450261819436.pdf [Accessed 11 March 2025]. (In Russ.).

48. Menshutina NV, Guseva EV, Safarov RR, Boudrant J. Modeling of hollow fiber membrane bioreactor for mammalian cell cultivation using computational hydrodynamics. Bioprocess and biosystems engineering. 2020;43:549-567. doi: 10.1007/s00449-019-02249-9

49. Tian Y, Wang Z, Wang L. Hollow fibers: from fabrication to applications. Chemical communications. 2021;57(73):9166-9177. doi: 10.1039/D1CC02991F

50. Stanbury PF, Whitaker A, Hall SJ. Principles of fermentation technology. Oxford: Butterworth-Heinemann, 2016. 824 p. Available from: https://shop.elsevier.com/books/principles-of-fermentation-technology/stanbury/978-0-08-099953-1 [Accessed 11 March 2025].

51. Townsend TG. Landfill bioreactor design & operation. London: Routledge; 2018. 208 p. doi: 10.1201/9780203749555

52. Pasini A., Lovecchio J., Ferretti G., Giordano E. Medium perfusion flow improves osteogenic commitment of human stromal cells. Stem cells international. 2019;2019(1):1304194. doi: 10.1155/2019/1304194

53. Spier RE, Griffiths JB, Berthold W. Animal cell technology: Products of today, prospects for tomorrow. Amsterdam: Elsevier; 2013. 852 p. Available from: https://books.google.ru/books?id=3xLLBAAAQBAJ&lr=&hl=ru&source=gbs_navlinks_s [Accessed 11 March 2025].

54. Pörtner R. Animal cell biotechnology: Methods and protocols, Fourth edition. New York: Humana New York; 2020. 399 p. doi: 10.1007/978-1-0716-0191-4

55. Khoobkar Z, Shariati FP, Safekordi AA, Amrei HD. Performance assessment of a novel pyramid photobioreactor for cultivation of microalgae using external and internal light sources. Food technology and biotechnology. 2019;57(1):68. doi: 10.17113/ftb.57.01.19.5702

56. Brooks R, Connolly A, Pusitdhikul C, Niranjan A, White I, Treanor C, Reid TW, Young M, Isoko K, Ramic S, Marshall-Andrews I, Lewis D, Doonan R. Toroidal bioreactor: Modeling, designing, and building a novel bioreactor for continuous culture. Available from: https://2022.igem.wiki/sheffield/hardware [Accessed 11 March 2025].

57. Chu CY, Lo H, Wang ZF. Hydrodynamic properties in a hydrogen production fermenter using sugary wastewater. International journal of hydrogen energy. 2016;41(7):4455-4465. doi: 10.1016/j.ijhydene.2015.11.020

58. Kilonzo PM, Margaritis A. The effects of non-Newtonian fermentation broth viscosity and small bubble segregation on oxygen mass transfer in gas-lift bioreactors : A critical review. Biochemical engineering journal. 2004;17(1):27-40. doi: 10.1016/S1369-703X(03)00121-9

59. Ruthwek N, Sengar RS, Chaudhary R, Rani V, et al. A review: Types of bioreactors and their applications for sustainable environment. Biotech Today. 2021;11(2):78-86. doi: 10.5958/2322-0996.2021.00017.X


Review

For citations:


Dosaev A.A., Safarov R.R., Menshutina N.V. Classification analysis of modern bioreactor systems (review). Part 1. Classification of bioreactors by design parameters. Modern Science and Innovations. 2025;(1):106-125. (In Russ.) https://doi.org/10.37493/2307-910X.2025.1.9

Views: 113


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)