Prospects for the implementation of artificial intelligence in renewable energy management
https://doi.org/10.37493/2307-910X.2024.4.14
Abstract
The article is an attempt at research in the field of the use of artificial intelligence (AI). The efficiency of using artificial intelligence (AI) technologies to control the load at the plant, energy generation from renewable energy sources, and the use of AI in these processes is analyzed. The research of the current state and prospects of AI development in various industries and directions, the complexity in the multidimensional use of Artificial Intelligence at power plants in the areas of "green energy" are analyzed.
About the Authors
A. T. RostovaRussian Federation
Antonina T. Rostova – Dr. Sci. (Philos.)., Cand. Sci. (Phys.-Math.)., Professor of the Department of Electric Power and Transport
Pyatigorsk
+79283462896
A. A. Sokolov
Russian Federation
Alexander A. Sokolov – 2nd year Student of the Electrical power engineering and electrical engineering direction
Pyatigorsk
+7 9682614100
G. V. Masyutina
Russian Federation
Galina V. Masyutina – Cand. Sci. (Techn.)., Associate Professor, Head of the Department of Electric Power Engineering and Transport
Pyatigorsk
References
1. Sol'skaya I. YU., Kozyreva S. E. Rol' iskusstvennogo intellekta v povyshenii ehffektivnosti ehnergosektora /Sbornik nauchnykh statei vserossiiskoi nauchno-prakticheskoi konferentsii "Finansovye aspekty strukturnykh preobrazovanii ehkonomiki" (FASPEH-2024). - № 10 (2024). - https://ojs.irgups.ru/index.php/economy/issue/view/99 (data obrashcheniya 01.10.2024)
2. Khokhraiter, S. Dolgaya kratkosrochnaya pamyat' / S. Khokhraiter, Dzh. Shmidkhuber // Neural Computation. - 1997. - T.9, № 8. - S.1735-1780. - URL: https://doi.org/10.1162/neco.1997.9.8.1735 (data obrashcheniya 01.10.2024)
3. Le Kun, YA. Glubokoe obuchenie / YA. LEKun, I. Bendzhio, Dzh. Khinton // Nature. - 2015. - T. 521, № 7553. - S.436–444. - URL: https://doi.org/10.1038/nature14539 (data obrashcheniya 01.10.2024)
4. Mnikh, V. Upravlenie na urovne cheloveka s pomoshch'yu glubokogo obucheniya s podkrepleniem / V. Mnikh [i dr.] // Nature. - 2015. - T. 518, № 7540. -S. 529-533. - URL: https://doi.org/10.1038/nature14236
5. Satton, R. S. Obuchenie s podkrepleniem: vvedenie / R. S. Satton, A. G. Barto. — 2-e izd. -MIT Press, 2018. -URL: http://incompleteideas.net/book/the-book-2nd.html (data obrashcheniya 01.10.2024)
6. Shmid, U. Glubokoe obuchenie v neironnykh setyakh: obzor / U. Shmid // Neural Networks. - 2015. - T. 61. - S. 85–117. - URL: https://doi.org/10.1016/j.neunet.2014.09.003 (data obrashcheniya 01.10.2024)
7. Bertsekas, D. P. Neirodinamicheskoe programmirovanie / D. P. Bertsekas, Dzh. N. Tsitsiklis. - Athena Scientific, 1996. - URL: http://www.athenasc.com/ndpbook.html (data obrashcheniya 01.10.2024)
8. Masyutina G.V., Rostova A.T., Eliseeva A.A., Shchikunov N.N. Perspektivy ispol'zovaniya solnechnoi ehnergetiki s primeneniem tekhnologii iskusstvennogo intellekta v agropromyshlennykh kompleksakh // Sbornik statei vserossiiskoi nauchno-prakticheskoi konferentsii «Sovremennye podkhody k razvitiyu agropromyshlennogo, khimicheskogo i lesnogo kompleksa. Problemy, tendentsii, perspektivY». – Velikii Novgorod: FGBOU VO «Novgorodskii gosudarstvennyi universitet imeni Yaroslava MudrogO», 2021. - S. 419-425. - 471 s.
9. Tishchenko V.V., Rostova A.T. Ispol'zovanie neirosetei v upravlenii sprosom potrebitelei // Materialy natsional'noi (s mezhdunarodnym uchastiem) nauchno-prakticheskoi konferentsii «Tsifrovye sistemy i modeli: Teoriya i praktika proektirovaniya, razrabotki i primeneniYA». - Kazan': Kazanskii gosudarstvennyi ehnergeticheskii universitet, 2024. – S. 1140-1142. - 1616 s.
10. Bugorskii I.A., Pan'kov D.N. Rol' iskusstvennogo intellekta v upravlenii vozobnovlyaemymi istochnikami ehnergii// Perspektivy razvitiya tekhnologii obrabotki i oborudovaniya v mashinostroenii Sbornik nauchnykh statei Vserossiiskoi nauchno-tekhnicheskoi konferentsii. Voronezh, Izd-ctvo: Voronezhskii gosudarstvennyi tekhnicheskii universitet (Voronezh) 2023 - C. 94-98
11. Shed'ko YU.N. Problemy i resheniya v tsifrovizatsii v «zelenoi ehnergetikE» v regionakh Rossii//Gosudarstvo, vlast', upravlenie i pravo: materialy XII Vserossiiskoi nauchno-prakticheskoi konferentsii / Ministerstvo nauki i vysshego obrazovaniya Rossiiskoi Federatsii, Gosudarstvennyi universitet upravleniya. – Moskva: GUU, 2022C/182—188.
Review
For citations:
Rostova A.T., Sokolov A.A., Masyutina G.V. Prospects for the implementation of artificial intelligence in renewable energy management. Modern Science and Innovations. 2024;(4):130-135. https://doi.org/10.37493/2307-910X.2024.4.14