Preview

Modern Science and Innovations

Advanced search

Project Sun Gazers

https://doi.org/10.37493/2307-910X.2023.4.6

Abstract

An actual task of modern solar physics is the prediction of geoeffective phenomena, which include the fast solar wind, flares, and coronal plasma ejections that cause perturbations of the geomagnetic field in near-Earth space. Some of these disturbances are well known as magnetic storms. The goal of the Sun Gazers project is to create a database, three-dimensional visualization and forecast of the events described above. This database will allow us to match initial and boundary conditions for MHD-modeling. Visualization is necessary for visual comparison and analysis of the events of the above database.

About the Authors

O. N. Mikhalyaev
Kalmyk State University named after B.B. Gorodovikov
Russian Federation

Oleg N. Mikhalyaev – Junior Researcher at the Laboratory "Physics of the Sun"

11, Pushkin St., Elista



M. E. Sapraliev
Kalmyk State University named after B.B. Gorodovikov
Russian Federation

Mikhail E. Sapraliev – Junior Researcher at the Laboratory "Physics of the Sun"

11, Pushkin St., Elista



G. A. Mankaeva
Kalmyk State University named after B.B. Gorodovikov
Russian Federation

Galina A. Mankaeva – Researcher at the Laboratory "Physics of the Sun"

11, Pushkin St., Elista



T. V. Velegurin
Kalmyk State University named after B.B. Gorodovikov
Russian Federation

Timofey V. Velegurin – Research Engineer at the Scientific Laboratory "Physics of the Sun"

11, Pushkin St., Elista



L. N. Kharldaev
Kalmyk State University named after B.B. Gorodovikov
Russian Federation

Lidzhi N. Kharldaev – Junior Researcher at the Laboratory "Physics of the Sun"

11, Pushkin St., Elista



References

1. Sait proekta Observe The Sun. Available from: https://observethesun.ru [Accessed 10 September 2023].

2. Sait Kislovodskoi gornoi astronomicheskoi stantsii. Available from: http://solarstation.ru/sunservice/magnetic_field [Accessed 10 September 2023].

3. Sait solnechnoi i astrofizicheskoi laboratorii Lockheed Martin. Available from: https://www.lmsal.com/heksearch [Accessed 10 September 2023].

4. Sait The Global Oscillation Network Group. Available from: https://gong.nso.edu/data/magmap/pfss.html [Accessed 11 September 2023].

5. Sait laboratorii "Fizika Solntsa". Available from: sw.kalmsu.ru [Accessed 12 September 2023].

6. Verbeeck C, Delouille V, Mampaey B, Visscher RD. The SPoCA-suite: Software for extraction, characterization, and tracking of active regions and coronal holes on EUV images. Astronomy & Astrophysics. 2014;561:A29. https://doi.org/10.1051/0004-6361/201321243

7. Stansby D, Yeates A, Badman ST. pfsspy: A Python package for potential field source surface modelling. Journal of Open Source Software. 2020;5(54):2732. https://doi.org/10.21105/joss.02732

8. Schatten K, Wilcox J, Ness N. A model of interplanetary and coronal magnetic fields. Solar Physics. 1969;6(3):442-455. https://doi.org/10.1007/BF00146478

9. Altschuler M, Newkirk G. Magnetic Fields and the Structure of the Solar Corona. I: Methods of Calculating Coronal Fields. Solar Physics. 1969;9(1):131-149. https://doi.org/10.1007/BF00145734

10. Hoeksema J. Structure and Evolution of the Large Scale Solar and Heliospheric Magnetic Fields. Thesis (PH.D.). Stanford University.Source: Dissertation Abstracts International. 1984;45-06(B):1811. Available from: https://adsabs.harvard.edu/abs/1984PhDT.........5H [Accessed 14 September 2023].

11. Wang Y, Sheeley N. On Potential Field Models of the Solar Corona. Astrophysical Journal. 1992;392:310. https://doi.org/10.1086/171430

12. Neugebauer M, Forsyth RJ, Galvin AB, Harvey KL, Hoeksema JT, Lazarus AK, Lepping RP, Linker JA., Mikic Z, Steinberg JT, von Steiger R, Wang Y-M, Wimmer-Schweingruber RF. Spatial structure of the solar wind and comparisons with solar data and models. Journal of Geophysical Research. 1998;103(A7):14587-14600. https://doi.org/10.1029/98JA00798

13. Riley P, Linker JA, Mikić Z, Lionello R, Ledvina SA, Luhmann JG. A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results. The Astrophysical Journal. 2006;653(2):1510-1516. https://doi.org/10.1086/508565

14. Lee CO, Luhmann JG, Hoeksema JT, Sun X, Arge CN, de Pater I. Coronal Field Opens at Lower Height During the Solar Cycles 22 and 23 Minimum Periods: IMF Comparison Suggests the Source Surface Should Be Lowered, Solar Physics. 2011;269(2):367-388, https://doi.org/10.1007/s11207-010-9699-9

15. Arden WM, Norton AA, Sun X. A "breathing" source surface for cycles 23 and 24, Journal of Geophysical Research: Space Physics. 2014;119(3):1476-1485. https://doi.org/10.1002/2013JA019464

16. Berezin I, Tlatov A. Coronal Field Geometry and Solar Wind Speed. Universe. 2022;8(12):646. https://doi.org/10.3390/universe8120646


Review

For citations:


Mikhalyaev O.N., Sapraliev M.E., Mankaeva G.A., Velegurin T.V., Kharldaev L.N. Project Sun Gazers. Modern Science and Innovations. 2023;(4):56-63. https://doi.org/10.37493/2307-910X.2023.4.6

Views: 193


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)