Prognosis of the anti-inflammatory activity of the main components of wormwood by methods of network pharmacology
https://doi.org/10.37493/2307-910X.2023.3.28
Abstract
Of considerable value are "natural bioregulators - traditional herbal medicines with historically proven efficacy and safety." A potential source of biologically active compounds is Artemisiae scopariae herba. Purpose of the study. To predict the probable ways of implementing anti-inflammatory activity for the main active compounds of the extract based on the aerial part of Artemisia scoparia. Free online services, programs and databases: SwissTargetPrediction, GeneCards, DisGeNet, Venny 2.1, STRING, Cytoscape.
Results. The anti-inflammatory effect of the studied compounds, described as the main active substances in the extract from the aerial part of Artemisia scoparia, can probably be realized both through well-known second messengers, primary targets, and through promising targets. Putative targets associated with the manifestation of the anti-inflammatory activity of the extract from Artemisiae scopariae herba have been identified.
About the Authors
E. E. AirapetyanRussian Federation
Emma E. Airapetyan – Teacher of the Department of Morphology,
Pyatigorsk
D. S. Zolotykh
Russian Federation
Denis S. Zolotykh – PhD in Pharmaceuticals, Associate Professor of the Department of
Toxicological and Analytical Chemistry,
Pyatigorsk
D. A. Konovalov
Russian Federation
Dmitry A. Konovalov – Dr. Sci. (Pharm.), Professor, Head of the Department of Pharmacognosy, Botany and Technology of Herbal Medicines,
Pyatigorsk
References
1. Konovalov DA. Aromaticheskie poliatsetilenovye soedineniya sem. Asteraceae i ikh khemotaksonomicheskoe znachenie. Rastitel'nye resursy. 1996;4:84-98.
2. Konovalov DA. Prirodnye poliatsetilenovye soedineniya. Farmatsiya i farmakologiya. 2014;4:23-48.
3. Ding J, Wang L, He C, Zhao J, Si L, Huang H. Artemisia scoparia: traditional uses, active constituents and pharmacological effects. Journal of Ethnopharmacology. 2021;273:113960.
4. Liu YP. Research progress on pharmacological effect of Artemisiae Scopariae Herba. Chinese Traditional and Herbal Drugs. 2019;2235-2241.
5. Pharmacopoeia of the People‘s Republic of China. English Edition, 2005. Vol. I.
6. Rozhanets VV. Polyn' (Artemisia sp.): komponent lekarstvennykh sredstv, biologicheski aktivnykh dobavok, primenyaemykh v narkologii i spirtnykh napitkov. Narkologiya. 2003. № 9. S. 51-56.
7. Khan K, Fatima H, Taqi MM, Zia M, Mirza B. Phytochemical and in vitro biological evaluation of Artemisia scoparia Waldst. et Kit. for enhanced extraction of commercially significant bioactive compounds. Journal of Applied Research on Medicinal and Aromatic Plants. 2015;2:77–86.
8. Janbaz KH, Saeed SA, Gilani AH. Protective effect of rutin on paracetamoland CCl4- induced hepatotoxicity in rodents. Fitoterapia. 2002;73:57–563.
9. Gendrisch F, Esser PR, Schempp CM, Wölfle U. Luteolin as a modulator of skin aging and inflammation. Biofactors. 2021;47(2):170–180. https://doi.org/10.1002/biof.1699
10. Abarikwu SO, Njoku RC, John IG, Amadi BA, Mgbudom-Okah CJ, Onuah CL. Antioxidant and anti-inflammatory protective effects of rutin and kolaviron against busulfan-induced testicular injuries in rats. Systems biology in reproductive medicine. 2022;68(2):151–161. https://doi.org/10.1080/19396368.2021.1989727
11. Miao M, Xiang L. Pharmacological action and potential targets of chlorogenic acid. Advances in pharmacology (San Diego, Calif.). 2020;87:71–88. https://doi.org/10.1016/bs.apha.2019.12.002
12. Liu B, Deng X, Jiang Q, Li G, Zhang J, Zhang N, Xin S, Xu K. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomedicine & pharmacotherapy. Biomedecine & pharmacotherapie. 2020;125:109895. https://doi.org/10.1016/j.biopha.2020.109895
13. Sakthivel KM, Vishnupriya S, Priya Dharshini LC, Rasmi RR, Ramesh B. Modulation of multiple cellular signalling pathways as targets for anti-inflammatory and anti-tumorigenesis action of Scopoletin. The Journal of pharmacy and pharmacology. 2022;74(2):147-161. https://doi.org/10.1093/jpp/rgab047
14. Rauf A, Khan R, Khan H, Pervez S, Pirzada AS. In vivo antinociceptive and antiinflammatory activities of umbelliferone isolated from Potentilla evestita. Natural product research. 2014;28(17):1371–1374. https://doi.org/10.1080/14786419.2014.901317
15. Di Lorenzo A, Fernández-Hernando C, Cirino G, Sessa WC. Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(34):1455214557. https://doi.org/10.1073/pnas.0904073106
16. Simon LS. Role and regulation of cyclooxygenase-2 during inflammation. The American journal of medicine. 1999;106(5B):37S–42S. https://doi.org/10.1016/s0002-9343(99)00115-1
17. Medeiros NI, Gome JAS, Correa-Oliveir R. Synergic and antagonistic relationship between MMP-2 and MMP-9 with fibrosis and inflammation in Chagas' cardiomyopathy. Parasite immunology. 2017;39(8):101111. https://doi.org/10.1111/pim.12446
18. Fei J, Liang B, Jiang C, Ni H., Wang L. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomedicine & pharmacotherapy. Biomedecine & pharmacotherapie. 2019;109:1586–1592. https://doi.org/10.1016/j.biopha.2018.09.161
Review
For citations:
Airapetyan E.E., Zolotykh D.S., Konovalov D.A. Prognosis of the anti-inflammatory activity of the main components of wormwood by methods of network pharmacology. Modern Science and Innovations. 2023;(3):283-292. (In Russ.) https://doi.org/10.37493/2307-910X.2023.3.28