Preview

Modern Science and Innovations

Advanced search

Development of a confidential search algorithm in distributed systems

https://doi.org/10.37493/2307-910X.2023.2.1

Abstract

This paper deals with distributed computing systems, as well as distributed data storage systems. Given the existing internal threats to such systems. The paper proposes a confidential search algorithm for distributed systems based on fully homomorphic encryption. This algorithm allows you to perform a search operation in the nodes of a distributed system without decrypting the information in them.

About the Authors

E. M. Shiryaev
FSAEI HE "North-Caucasus Federal University"
Russian Federation

Shiryaev Egor Mikhailovich – Postgraduate Student, Department of Computational
Mathematics and Cybernetics, Faculty of Mathematics and Computer Science named after
Professor N.I. Chervyakov,

355000, Stavropol



N. N. Kucherov
FSAEI HE "North-Caucasus Federal University"
Russian Federation

Kucherov Nikolay Nikolaevich – Senior Researcher Educational and Scientific Center "Computational Mathematics and Parallel Programming on Supercomputers" Faculty of
Mathematics and Computer Science named after Professor N.I. Chervyakov,

355000, Stavropol



O. V. Krivolapova
FSAEI HE "North-Caucasus Federal University"
Russian Federation

Krivolapova Olga Vladimirovna – Postgraduate Student, Department of Computational
Mathematics and Cybernetics, Faculty of Mathematics and Computer Science named after
Professor N.I. Chervyakov,

355000, Stavropol



References

1. Mazur EH. M. Raspredelennye sistemy khraneniya dannykh: analiz, klassifikatsiya i vybor // Perspektivy razvitiya informatsionnykh tekhnologii. 2015. No. 26. P. 33-60.

2. Marts N., Uorren D. Bol'shie dannye: Printsipy i praktika postroeniya masshtabiruemykh sistem obrabotki dannykh v real'nom vremeni. M.: Vil'yams. 2017. 368 p.

3. Radchenko G. I. Raspredelennye vychislitel'nye sistemy // Chelyabinsk: Fotokhudozhnik. 2012. P. 184.

4. Kharitonov V. S., Cheryapkin D. P. DDoS-ataka: klassifikatsiya i osobennosti // Postulat. 2016. № 12 (14). P. 45.

5. Shakirov I. A. O fundamental'nykh kharakteristikakh semeistva interpolyatsionnykh polinomov Lagranzha // Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Matematika. Mekhanika. Informatika. 2013. No. 1-2 (13). P. 99-104.

6. Akyildiz I. F. [et al.]. A new random walk model for PCS networks // IEEE Journal on selected areas in communications. 2000. No. 7 (18). P. 1254–1260.

7. Babenko M. [et al.]. Experimental Evaluation of Homomorphic Comparison Methods // Proceedings - 2020 Ivannikov Ispras Open Conference, ISPRAS 2020. 2020. P. 69–74.

8. Chauhan K. K., Sanger A. K., Verma A. Homomorphic encryption for data security in cloud computing // International Conference on Information Technology (ICIT), Bhubaneswar, India. 2015. P. 206–209.

9. Chen H., Chillotti I., Song Y. Improved bootstrapping for approximate homomorphic encryption // Advances in Cryptology – EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. Cham: Springer International Publishing, 2019, P. 34–54.

10. Cheon J. H. [et al.]. Homomorphic encryption for arithmetic of approximate numbers // International Conference on the Theory and Application of Cryptology and Information Security. Springer, 2017. P. 409–437.

11. Cheon J. H., Kim A. Homomorphic encryption for approximate matrix arithmetic // Cryptology ePrint Archive. 2018.

12. Cheon J. H., Kim D., Kim D. Efficient homomorphic comparison methods with optimal complexity // Proceedings of 2020 International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT 2020). Springer, 2020. P. 221–256.

13. Cordero A. [et al.]. Numerically stable improved Chebyshev–Halley type schemes for matrix sign function // Journal of Computational and Applied Mathematics. 2017. No. 318. P. 189– 198.

14. Dabek F. F. E. A distributed hash table 2005.

15. Darken C., Moody J. Towards faster stochastic gradient search // Advances in neural information processing systems. 1991. Vol. 4.

16. Dijk M. van [et al.]. Fully homomorphic encryption over the integers // EUROCRYPT 2010, LNCS, Springer. 2010. Vol. 6110. P. 24–43.

17. Gentry C. A fully homomorphic encryption scheme / C. Gentry, Stanford university, 2009.

18. Gentry C., Halevi S. Implementing gentry’s fully-homomorphic encryption scheme // EUROCRYPT 2011. LNCS. Springer, 2011. Vol. 6632. P. 129–148.

19. Higham N. J. Functions of matrices: theory and computation / N. J. Higham. SIAM, 2008.

20. Kohnfelder L. M. Towards a practical public-key cryptosystem. 1978.

21. Lyubashevsky V., Peikert C., Regev O. On ideal lattices and learning with errors over rings // Journal of the ACM (JACM). 2013. No. 6 (60). P. 1–35.

22. Nakatsukasa Y., Bai Z., Gygi F. Optimizing Halley’s iteration for computing the matrix polar decomposition // SIAM Journal on Matrix Analysis and Applications. 2010. No. 5 (31). P. 2700–2720.

23. Pereira R. F. [et al.]. Iterative Depth-First Search for FOND Planning 2022. P. 90–99.


Review

For citations:


Shiryaev E.M., Kucherov N.N., Krivolapova O.V. Development of a confidential search algorithm in distributed systems. Modern Science and Innovations. 2023;(2):10-19. (In Russ.) https://doi.org/10.37493/2307-910X.2023.2.1

Views: 135


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)