Preview

Modern Science and Innovations

Advanced search

APPLICATION OF NEURAL NETWORKS IN DIAGNOSTICS OF BREAST CANCER ACCORDING TO THE DATA OF MICROWAVE RADIO THERMOMETRY

Abstract

In recent years, the method of microwave radiothermometry has been increasingly used in the diagnosis of breast cancer. However, the analysis and interpretation of thermometric data is quite a difficult task. In this paper, we propose a method for developing a neural network designed for the diagnosis of breast cancer according to microwave radiothermometry. The effectiveness of the combined use of the characteristic space based on medical knowledge and the results of anamnesis is proved. One of the modern and effective methods of functional diagnosis is the method of microwave radiothermometry, which in recent years has found application in a number of areas of medicine, including the diagnosis of breast cancer. However, the analysis of microwave radiothermometry data is a very complex task, which prevents the widespread use of this method in screening. This problem can be solved by creating an effective expert system based on the use of mathematical and computer modeling methods, the capabilities of modern information technologies and, above all, machine learning algorithms. This article is devoted to one of the aspects of this problem. Specifically, the possibilities of using neural networks in the diagnosis of breast cancer based on microwave radiothermometry and history results are discussed. The parameters proposed in this study, as well as the combined use of modeling functions and anamnesis results in the first layer, allowed to significantly increase the efficiency of the classifier in comparison with previous results.

About the Authors

A. Losev
Volgograd State University
Russian Federation


D. Medvedev
Volgograd State University
Russian Federation


References

1. Авраменко Г. В. Использование радиотермометрии в скрининге непальпируемых новообразований молочных желез// Вестник рентгенологии и радиологии. 2007. № 5. С. 11-14.

2. Веденяпин Д.А., Лосев А.Г. Об одной нейросетевой модели диагностики венозных заболеваний // Управление большими системами: сборник трудов. 2012. № 39. С. 219 - 229.

3. Веснин С. Г., Каплан А. М., Авакян Р. С. Современная микроволновая радиотермометрия молочных желез // Медицинский альманах. 2008. № 3. С. 82-87.

4. Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение. М.: ДМК Пресс. 2017. 652 с.

5. Зенович А.В., Гребнев В.И., Примаченко Ф.Г. Алгоритмы классификации парных органов на основе нейросетей и нечетких множеств// Математическая физика и компьютерное моделирование. 2017. Т. 20. № 6. С. 26 - 37.

6. Кобринский Б.А. Консультативные интеллектуальные медицинские системы: классификация, принципы построения, эффективность// Врач и информационные технологии. 2008. №2. С. 38-47.

7. Лосев А. Г., Левшинский В. В. Интеллектуальный анализ данных микроволновой радиотермометрии в диагностике рака молочной железы// Математическая физика и компьютерное моделирование. 2017. Т. 20. № 5. С.49 - 62.

8. Поляков М.В., Хоперсков А.В. Математическое моделирование пространственного распределения радиационного поля в биоткани: определение яркостной температуры для диагностики// Вестник Волгоградского государственного университета. Серия 1. Математика. Физика. 2016. № 5(36). С. 73 - 84.

9. Galazis, C., Vesnin S., Goryanin I. Application of Artificial Intelligence in Microwave Radiometry (MWR)// Proceedings of the 12th International Joint Conference on Biomedical Engineering Systems and Technologies. 2019. Volume 3, p. 112-122.

10. Vesnin S., Turnbull A.K., Dixon J.M., Gorynin I. Modern Microwave Thermometry for Breast Cancer// Journal of Molecular Imaging & Dynamics/ 2017. V. 7. Is. 2. 1000136.


Review

For citations:


Losev A., Medvedev D. APPLICATION OF NEURAL NETWORKS IN DIAGNOSTICS OF BREAST CANCER ACCORDING TO THE DATA OF MICROWAVE RADIO THERMOMETRY. Modern Science and Innovations. 2019;(4):22-28. (In Russ.)

Views: 124


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)