Preview

Modern Science and Innovations

Advanced search

Prospects for the use of polyphenols as sources of antioxidants for functional nutrition

https://doi.org/10.37493/2307-910X.2022.3.7

Abstract

According to WHO data, there is a reduced consumption of fruits and vegetables among the population. At the moment, a similar consumption deficit is observed in Russia. A reduced amount of such products in the diet leads to an increase in non-communicable diseases, an increase in oxidative stress in the human body, which in turn leads to a decrease in the antioxidant status. This problem can be solved by adding various functional foods with various antioxidant components with increased antioxidant activity to the human diet. Polyphenols have similar activity. 10 groups of flavonoids were considered, as well as other large groups of polyphenols. Some flavonoids and anthocyanidins are mainly used in foods. The remaining groups, despite their useful therapeutic properties, are not used in the food industry.

According to the PubMed resource, there has been a significant increase in publication activity on the topics of functional nutrition and polyphenols over the past 20 years, both abroad and in Russia.

Functional products with polyphenols are presented in greater quantities on foreign markets than on Russian ones. Such products are represented abroad in a variety of market segments - in bakery products, dairy products, soft drinks, dry foods and superfoods. On the Russian market, products with polyphenols are presented in small quantities in dairy products, soft drinks and superfoods, often by foreign companies. In modern conditions, such a distribution raises the problem of import substitution and the need to use scientific food achievements in the field of dairy products and soft drinks, ahead of foreign analogues.

About the Authors

N. M. Fedortsov
North-Caucasian Federal University
Russian Federation

Nikita M. Fedortsov - PhD student, North Caucasus Federal University, Department of Applied Biotechnology.

Stavropol, st. Pushkin, 1.

Tel.: +7-928-329-20-53



R. O. Budkevich
North-Caucasian Federal University
Russian Federation

Roman O. Budkevich - PhD in Biology, Docent, Leading Researcher, Nanobiotechnology and Biophysics Research Laboratory, Faculty of Food Engineering and Biotechnology, North Caucasus Federal University.

Stavropol, st. Pushkin, 1.

Tel.: +7-865-233-07-12



References

1. Kodentsova V.M. i dr. Vitaminnaya obespechennost' vzroslogo naseleniya Rossiiskoi Federatsii: 1987-2017 gg. // Voprosy pitaniya. – 2018. – T. 87. – № 4. – S. 62–68.

2. Tarmaeva I.YU. i dr. Otsenka pitaniya vzroslogo naseleniya na sovremennom ehtape // Sovremennye problemy nauki i obrazovaniya. – 2017. – № 5.

3. Varaeva YU.R. i dr. Analiz osobennostei pitaniya zhitelei goroda Moskvy // Zdorov'e megapolisa. – 2020. – T. 1. – № 2. – S. 32–37.

4. Nani A. et al. Antioxidant and Anti-Inflammatory Potential of Polyphenols Contained in Mediterranean Diet in Obesity: Molecular Mechanisms // Molecules. MDPI AG. – 2021. – Vol. 26. – № 985. P. 1–10.

5. Săvescu P. Natural Compounds with Antioxidant Activity-Used in the Design of Functional Foods // Funct. Foods - Phytochem. Heal. Promot. Potential. IntechOpen. – 2021.

6. Cory H. et al. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review // Front. Nutr. Frontiers Media S.A.. – 2018. – Vol. 5. – P. 1–11.

7. Fudnet [Ehlektronnyi resurs]. URL: https://nti2035.ru/markets/foodnet (data obrashcheniya: 06.07.2022).

8. Aruoma O.I. Free radicals, oxidative stress, and antioxidants in human health and disease // J. Am. Oil Chem. Soc. – 1998. – Vol. 75. – № 2. – P. 199–212.

9. Yin F., Boveris A., Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration // Antioxidants Redox Signal. – 2015. – P. 1–43.

10. Nandi A. et al. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases // Oxid. Med. Cell. Longev. Hindawi Limited. – 2019. – Vol. 2019.

11. Stadtman E.R. Protein oxidation and aging. Free Radical Research // Science (80-.). – 1992. – Vol. 40257. – № 5074. – P. 1220–1224.

12. Curtin J.F., Donovan M., Cotter T.G. Regulation and measurement of oxidative stress in apoptosis // J. Immunol. Methods. – 2002. – Vol. 265. – № 1–2. – P. 49–72.

13. Liu J. et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: Partial reversal by feeding acetyl-L-carnitine and/or R-α-lipoic acid // Proc. Natl. Acad. Sci. U. S. A. – 2002. – Vol. 99. – № 4. – P. 2356–2361.

14. Mishra R., Singh Bisht S. Antioxidants and their charecterization // J. Pharm. Res. – 2011. – Vol. 4. – № 8. P. – 2744–2746.

15. Pokorný J. Are natural antioxidants better - and safer - Than synthetic antioxidants? // Eur. J. Lipid Sci. Technol. – 2007. – Vol. 109. – № 6. – P. 629–642.

16. Li J.K. et al. Natural plant polyphenols for alleviating oxidative damage in man: Current status and future perspectives // Trop. J. Pharm. Res. – 2016. – Vol. 15. – № 5. – P. 1089–1098.

17. Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease // Oxid. Med. Cell. Longev. Hindawi Limited. – 2009. – Vol. 2. – № 5. – P. 270.

18. Procházková D., Boušová I., Wilhelmová N. Antioxidant and prooxidant properties of flavonoids // Fitoterapia. – 2011. – Vol. 82. – № 4. – P. 513–523.

19. Daglia M. et al. Polyphenols: well beyond the antioxidant capacity: gallic acid and related compounds as neuroprotective agents: you are what you eat! // Curr Pharm Biotechnol. – 2014. – Vol. 15. – № 4. – P. 362–372.

20. Ruwizhi N., Aderibigbe B.A. Cinnamic Acid Derivatives and Their Biological Efficacy // Int. J. Mol. Sci. – 2020. – Vol. 21. – № 16. – P. 1–36.

21. Singh B.N., Shankar S., Srivastava R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications // Biochemical Pharmacology. Elsevier Inc. – 2011. – Vol. 82. – № 12. – P. 1807–1821.

22. Nomura S. et al. Effects of flavonol-rich green tea cultivar (Camellia sinensis L.) on plasma oxidized LDL levels in hypercholesterolemic mice // Japan Society for Bioscience Biotechnology and Agrochemistry. – 2016. – Vol. 80. – № 2. – P. 360–362.

23. Chen L., Zhang H.Y. Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate // Molecules. – 2007. – Vol. 12. – № 5. – P. 946–957.

24. Scalia S., Marchetti N., Bianchi A. Comparative evaluation of different co-Antioxidants on the photochemical- and functional-stability of epigallocatechin-3-Gallate in topical creams exposed to simulated sunlight // Molecules. – 2013. – Vol. 18. – № 1. – P. 574–587.

25. Carson M. et al. Whey Protein Complexes with Green Tea Polyphenols: Antimicrobial, Osteoblast-Stimulatory, and Antioxidant Activities // Cells Tissues Organs. S. Karger AG. – 2019. – Vol. 206. – № 1–2. – P. 106–117.

26. Haratifar S., Meckling K.A., Corredig M. Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells // J. Dairy Sci. – 2014. – Vol. 97. – № 2. – P. 672–678.

27. Momose Y., Maeda-Yamamoto M., Nabetani H. Systematic review of green tea epigallocatechin gallate in reducing low-density lipoprotein cholesterol levels of humans // Int. J. Food Sci. Nutr. Taylor and Francis Ltd. – 2016. – Vol. 67. – № 6. – P. 606–613.

28. Wu D. et al. Green tea EGCG, T cells, and T cell-mediated autoimmune diseases // Molecular Aspects of Medicine. – 2012. – Vol. 33. – № 1. – P. 107–118.

29. Furst R., Zundorf I. Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. // Mediators Inflamm. – 2014. – P. 1–9.

30. Riegsecker S. et al. Potential benefits of green tea polyphenol EGCG in the prevention and treatment of vascular inflammation in rheumatoid arthritis // Life Sciences. – 2013. – Vol. 93. – № 8. – P. 307–312.

31. Mana R. Ehlers, Rebecca M. Todd. Genesis and Maintenance of Attentional Biases: The Role of the Locus Coeruleus-Noradrenaline System // Neural Plast. Hindawi Limited. – 2017. – Vol. 1. – № 1. – P. 2–3.

32. Zhu Q.Y. et al. Stability of Green Tea Catechins // J. Agric. Food Chem. American Chemical Society. – 1997. – Vol. 45. – № 12. – P. 4624–4628.

33. Viljanen K. et al. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion // J. Agric. Food Chem. – 2005. – Vol. 53. – № 6. – P. 2022–2027.

34. Rocha J. de C.G. et al. Protein beverages containing anthocyanins of jabuticaba // Food Sci. Technol. Sociedade Brasileira de Ciencia e Tecnologia de Alimentos. – 2019. – Vol. 39. – № 1. – P. 112–119.

35. Oancea A.M. et al. Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate // Lwt. – 2018. – Vol. 95. – P. 129–134.

36. Ozkan G. et al. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications // Food Chem. Elsevier. – 2019. – Vol. 272. – P. 494–506.

37. Li H. et al. Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities // Food Res. Int. – 2012. – Vol. 46. – № 1. – P. 250–259.

38. He B. et al. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage // Food Chem. Elsevier Ltd. – 2017. – Vol. 221. – P. 1671–1677.

39. Popović D. et al. Protective effects of anthocyanins from bilberry extract in rats exposed to nephrotoxic effects of carbon tetrachloride // Chem. Biol. Interact. Elsevier Ireland Ltd. – 2019. – Vol. 304. – P. 61–72.

40. Flores F.P. et al. In vitro release properties of encapsulated blueberry (Vaccinium ashei) extracts // Food Chem. Elsevier Ltd. – 2015. – Vol. 168. – P. 225–232.

41. Kahle K. et al. Studies on apple and blueberry fruit constituents: Do the polyphenols reach the colon after ingestion? // Molecular Nutrition and Food Research. – 2006. – Vol. 50. – № 4–5. – P. 418–423.

42. Franklin R. et al. Grape Leucoanthocyanidin Protects Liver Tissue in Albino Rabbits with Nonalcoholic Hepatic Steatosis // Cells Tissues Organs. S. Karger AG. – 2018. – Vol. 205, – № 3. – P. 129–136.

43. Nibbs A.E., Scheidt K.A. Asymmetric methods for the synthesis of flavanones, chromanones, and azaflavanones // European Journal of Organic Chemistry. – 2012. – Vol. 2012. – № 3. – P. 449–462.

44. Majumdar S., Srirangam R. Solubility, stability, physicochemical characteristics and in vitro ocular tissue permeability of hesperidin: A natural bioflavonoid // Pharm. Res. – 2009. – Vol. 26. – № 5. – P. 1217–1225.

45. Mashkovskii M.D. Lekarstvennye sredstva: posobie dlya vrachei. Novaya Volna. – 2005. – 1200 s.

46. Proestos C., Komaitis M. Ultrasonically assisted extraction of phenolic compounds from aromatic plants: Comparison with conventional extraction technics // Journal of Food Quality. – 2006. – Vol. 29. – № 5. – P. 567–582.

47. Dykes L., Rooney L.W. Sorghum and millet phenols and antioxidants // J. Cereal Sci. – 2006. – Vol. 44. – № 3. – P. 236–251.

48. Dokkedal A.L. et al. Xeractinol - A new flavanonol C-glucoside from Paepalanthus argenteus var. argenteus (Bongard) Hensold (Eriocaulaceae) // J. Braz. Chem. Soc. Sociedade Brasileira de Quimica. – 2007. – Vol. 18. – № 2. – P. 437–439.

49. Turck D. et al. Scientific Opinion on taxifolin‐rich extract from Dahurian Larch (Larix gmelinii) // EFSA J. Wiley. – 2017. – Vol. 15. – № 2.

50. Luo H. et al. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids // Nutr. Cancer. – 2008. – Vol. 60. – № 6. – P. 800–809.

51. Lee S.B. et al. The chemopreventive effect of taxifolin is exerted through ARE-dependent gene regulation // Biol. Pharm. Bull. – 2007. – Vol. 30. – № 6. – P. 1074–1079.

52. Brusselmans K. et al. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity // J. Biol. Chem. 2005. Vol. 280, № 7. P. 5636–5645.

53. Guseva T.B., Karan'yan O.M., Kulikovskaya T.S. Uvelichenie sroka godnosti molochnykh konservov s primeneniem prirodnogo antioksidanta-digidrokvertsetina // Bezopasnost' i kachestvo tovarov. – 2019. – S. 79–82.

54. Blinova T.E., Radaeva I.A., Zdorovtsova A.N. Vliyanie digidrokvertsetina na molochnokislye bakterii // Molochnaya promyshlennost'. – 2008. – T. 5. – S. 57–59.

55. Carneiro E. et al. Isolation, chemical identification and pharmacological evaluation of eucryphin, astilbin and engelitin obtained from the bark of hymenaea martiana // Pharm. Biol. Informa Healthcare. – 1993. – Vol. 31. – № 1. – P. 38–46.

56. Fedoseeva G.M. i dr. Fitokhimicheskii analiz rastitel'nogo syr'ya, soderzhashchego flavonoidy // Metodicheskoe posobie po farmakognozii, Irkutsk. – 2009. – 67 s.

57. M. Calderon-Montano J. et al. A Review on the Dietary Flavonoid Kaempferol // Mini-Reviews Med. Chem. Bentham Science Publishers Ltd. – 2011. – Vol. 11. – № 4. – P. 298– 344.

58. Kim S.H., Choi K.C. Anti-cancer effect and underlying mechanism(s) of Kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models // Toxicological Research. – 2013. – Vol. 29. – № 4. – P. 229–234.

59. Gulyaev V.G., Gulyaev P.V., Gulyaeva S.V. Bezalkogol'nyi ozdorovitel'nyi napitok "Lespi" // Kirovskaya gosudarstvennaya meditsinskaya akademiya Federal'nogo agenstva po zdravookhraneniyu i sotsial'nomu razvitiyu, Rossiya. – 2006.

60. Sozhurenko M.S., Bessonov V.V., Solov'eva N.L. Polifenol'nye soedineniya v sportivnom pitanii: biokhimiya i napravlennost' deistviya // Voprosy pitaniya. – 2015. – T. 84. – № S3. – S. 69.

61. Center M. information. Flavonoids [Ehlektronnyi resurs] // Oregon State University. URL: https://lpi.oregonstate.edu/mic/dietary-factors/phytochemicals/flavonoids.

62. Li X. et al. Protective effects of quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the Nrf2 signaling pathway // PLoS One / ed. Byrnes K.R. Public Library of Science. – 2016. – Vol. 11. – № 10. – P. e0164237.

63. Boots A.W., Haenen G.R.M.M., Bast A. Health effects of quercetin: From antioxidant to nutraceutical // European Journal of Pharmacology. – 2008. – Vol. 585. – № 2–3. – P. 325– 337.

64. Mahapatra D.K., Bharti S.K., Asati V. Chalcone Derivatives: Anti-inflammatory Potential and Molecular Targets Perspectives // Curr. Top. Med. Chem. Bentham Science Publishers Ltd. – 2017. – Vol. 17. – № 28. – P. 3146–3169.

65. Yarishkin O. V. et al. Sulfonate chalcone as new class voltage-dependent K+ channel blocker // Bioorganic Med. Chem. Lett. – 2008. – Vol. 18. – № 1. – P. 137–140.

66. Nen'ko N.I. i dr. Ustoichivost' sortov vinograda razlichnogo ehkologichesko-geograficheskogo proiskhozhdeniya k nizkotemperaturnomu stressu v usloviyakh Anapo-Tamanskoi zony // Vinogradarstvo i vinodelie. – 2015. – T. 45. – S. 42–45.

67. Lutskii V.I., Chesnokova A.N., Gromova A.S. Prenilirovannye khalkony khmelya - prirodnye protivoopukholevye, antioksidantnye i antimikrobnye soedineniya // Vestnik Irkutstkogo gosudarstvennogo tekhnicheskogo universiteta. – 2007. – T. 29. – № 1. – S. 55–60.

68. Rumyantseva V.V. i dr. Primenenie podslastitelya pri prigotovlenii zhirovykh vafel'nykh nachinok // "Nauchno-izdatel'skii tsentr "Vestnik nauki" (Ufa). – 2019. – S. 25–30.

69. Gusakova G.S., Chesnokova, A.N., Kuz'min A.V.Fiziko-khimicheskie pokazateli i sostav fenol'nykh soedinenii soka iz yablok, kul'tiviruemykh v Pribaikal'e // Khimiya rastitel'nogo syr'ya. – 2018. – № 2. – S. 97–104.

70. Nakayama T. et al. Specificity analysis and mechanism of aurone synthesis catalyzed by aureusidin synthase, a polyphenol oxidase homolog responsible for flower coloration // FEBS Lett. – 2001. – Vol. 499. – № 1–2. – P. 107–111.

71. Atta-Ur-Rahman et al. Two new aurones from marine brown alga Spatoglossum variabile // Chem. Pharm. Bull. – 2001. – Vol. 49. – № 1. – P. 105–107.

72. Villemin D., Martin B., Bar N. Application of microwave in organic synthesis. Dry synthesis of 2-arylmethylene-3(2)-naphthofuranones // Molecules. Molecular Diversity Preservation International. – 1998. – Vol. 3. – № 3. – P. 88–93.

73. Sutton C.L. et al. Antifungal activity of substituted aurones // Bioorganic Med. Chem. Lett. Elsevier Ltd. – 2017. – Vol. 27. – № 4. – P. 901–903.

74. Budkevich R.O., Evdokimov I.A. Bezopasnost' ispol'zovaniya nanorazmernykh chastits // Molochnaya promyshlennost'. – 2010. – T. 1. – S. 46–48.

75. Amazon.com : Organic Acai Berry Powder, 3 oz Resealable Bag, 28 Servings — USDA certified, Non-GMO, Freeze-Dried, Gluten-Free, Packed in USA, Vegan, Halal, Kosher, Acai, Powder : Grocery & Gourmet Food [Ehlektronnyi resurs]. URL: https://www.amazon.com/Organic-Berry-Powder-Resealable-Servings/dp/B08YFJWFKY/ (data obrashcheniya: 06.07.2022).

76. Amazon.com : Laird Superfood Instafuel Matcha Plus Creamer, Matcha Latte Green Tea Powder Packed with Antioxidants with Original, Non-Dairy, Superfood Creamer, Gluten Free, Non-GMO, Vegan, 16 oz. Bag, Pack of 1 : Grocery & Gourmet Food [Ehlektronnyi resurs]. URL: https://www.amazon.com/dp/B07SGY68G8/ (data obrashcheniya: 06.07.2022)


Review

For citations:


Fedortsov N.M., Budkevich R.O. Prospects for the use of polyphenols as sources of antioxidants for functional nutrition. Modern Science and Innovations. 2022;(3):70-87. https://doi.org/10.37493/2307-910X.2022.3.7

Views: 364


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)