Preview

Modern Science and Innovations

Advanced search

Construction of the domain of attraction based on Lyapunov functions for general nonlinear systems

https://doi.org/10.37493/2307-910X.2022.3.1

Abstract

The paper proposes an algorithm for constructing Lyapunov candidate neural network functions in order to maximize the estimate of the area of attraction of the equilibrium position. To do this, it is necessary that the invariant subset, given by the level set, occupy the largest possible share of the empirical estimate of the attraction region obtained by the simulation. The implementation of this goal is carried out by introducing an additional term in the loss function. The algorithm makes it possible to construct candidate functions for systems with non-linearities of a rather general form. The operation of the algorithm is illustrated by an example.

About the Authors

S. A. Romanov
Saint Petersburg Electrotechnical University "LETI”
Russian Federation

Sergey A. Romanov - Researcher at the Department of Automation and Control Processes of the St. Petersburg State Electrotechnical University "LETI" named after V.I. Ulyanov (Lenin).

St. Petersburg, Professora Popova str., house 5



S. E. Dushin
Saint Petersburg Electrotechnical University "LETI”
Russian Federation

Sergey E. Dushin - Doctor of Technical Sciences, Professor of the Department of Automation and Control Processes of the St. Petersburg State Electrotechnical University "LETI" named after V.I. Ulyanov (Lenin).

St. Petersburg, Professora Popova str., house 5

Tel.: +7 (921) 970-46-31



I. I. Shpakovshaya
Saint Petersburg Electrotechnical University "LETI”
Russian Federation

Irina I. Shpakovskaya - Assistant of the Department of Automation and Control Processes of the St. Petersburg State Electrotechnical University "LETI" named after V.I. Ulyanov (Lenin).

St. Petersburg, Professora Popova str., 5

Tel.: +7 (950) 049-71-40



References

1. Pablo Parrilo. ―Structured Semidenite Programs and Semialgebraic Geometry Methods in Robustness and Optimization‖. V: PhD thesis, 2000

2. Daniel Richardson. ―Some Undecidable Problems Involving Elementary Functions of a Real Variable‖. V: The Journal of Symbolic Logic 33.4 (1968), s. 514— 520. issn: 00224812. url: http://www.jstor.org/stable/2271358 (data obr. 08.04.2022)

3. Hongkai Dai i dr. Lyapunov-stable neural-network control. 2021. arXiv: 2109.14152

4. Lars Gr¨une. ―Computing Lyapunov functions using deep neural networks‖. V: Journal of Computational Dynamics 8.2 (2021), s. 131—152.

5. Spencer M. Richards, Felix Berkenkamp i Andreas Krause. The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems. 2018. arXiv: 1808.00924

6. Guy Katz i dr. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. 2017. doi: 10.48550/ARXIV.1702.01135. url: https://arxiv.org/abs/1702.01135

7. Lyapunov A.M. Obshchaya zadacha ob ustoichivosti dvizheniya. Moskva: Gostekhizdat; 1950. 472 s

8. Y. Long i M.M. Bayoumi. ―Feedback stabilization: Control Lyapunov functions modelled by neural networks‖. V: Proceedings of 32nd IEEE Conference on Decision and Control. IEEE. 1993, s. 2812—2814

9. D.V. Prokhorov. ―A Lyapunov machine for stability analysis of nonlinear systems‖. V: Pro-ceedings of 1994 IEEE International Conference on Neural Networks (ICNN‘94). T. 2. 1994, 1028—1031 vol.2. doi: 10.1109/ICNN.1994.374324

10. Gursel Serpen. ―Empirical approximation for Lyapunov functions with artificial neural nets‖. V: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. T. 2. IEEE. 2005, s. 735—740

11. Alessandro Abate i dr. ―Formal synthesis of lyapunov neural networks‖. V: IEEE Con-trol Systems Letters 5.3 (2020), s. 773—778

12. Ya-Chien Chang, Nima Roohi i Sicun Gao. Neural Lyapunov Control. 2020. arXiv: 2005.00611

13. Nathan Gaby, Fumin Zhang i Xiaojing Ye. ―Lyapunov-net: A deep neural network archi-tecture for Lyapunov function approximation‖. V: arXiv preprint arXiv:2109.13359, 2021

14. H. Edelsbrunner, D. Kirkpatrick i R. Seidel. ―On the shape of a set of points in the plane‖. V: IEEE Transactions on Information Theory 29.4 (1983), s. 551—559. doi: 10.1109/TIT.1983.1056714

15. Graziano Chesi. ―Domain of attraction: estimates for non-polynomial systems via LMIs‖. V: 2005


Review

For citations:


Romanov S.A., Dushin S.E., Shpakovshaya I.I. Construction of the domain of attraction based on Lyapunov functions for general nonlinear systems. Modern Science and Innovations. 2022;(3):10-19. https://doi.org/10.37493/2307-910X.2022.3.1

Views: 279


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)