Preview

Modern Science and Innovations

Advanced search

THE CONDITIONS OF DIFFUSIONAL RADON INPUT INTO BUILDINGS AND FACILITIES

Abstract

A lot of investigations have been devoted to the studying of radon entry mechanisms into the buildings. However, there isn't established position to the dominant mechanism of radon transport. The reason of experimental data inconsistency is a significant number of factors influencing the radon input conditions (soil permeability, construction and condition of the construction basement) and wide range of its possible values. In this case the universal model design of the radon input into the buildings is impossible. More promising is the development of a simplified model which adequate to the actual process under certain conditions. This paper defines the conditions for which the description of the process of radon accumulation in rooms of lower floor is possible on the basist of diffusional model.

About the Authors

N. V. Bakaeva
Southwest State University
Russian Federation


A. V. Kalaido
Lugansk State University named byTaras Shevchenko
Russian Federation


References

1. Радоновая безопасность зданий / М. В. Жуковский и [др.]. Екатеринбург: УрО РАН, 2000. 180 с.

2. Arvela, Н. Seasonal variation in radon concentration of 3000 dwellings with model comparisons // Radiat. Prot. Dosim. 59 (1), 33-42 (1995).

3. Lembrechts J., Janssen М., Stoop P. Ventilation and radon transport in Dutch dwellings: computer modeling and field measurements // The Science of the Total Environment 272, 73-78 (2001).

4. Indoor radon exposure uncertainties caused by temporal variation / D. J. Steck [and other]. Physics Department, St. John’s University, Collegeville, MN 56321 USA.

5. Cohen B. L. A National Survey of 222Rn in US Homes and Correlating Factors. Health Phys. 51, 175-183 (1986).

6. Nielson К. K., Rogers V. C., Holt R. B., Pugh T. D., Grondzik W. A. and de Meijer R. J. Radon Penetration of Concrete Slab Cracks, Joints, Pipe Penetrations, and Sealants. Health Phys. 73, (4), 668-678 (1997).

7. Minkin L. Is diffusion, thermodiffusion or advection a primary mechanism of indoor radon entry // Radiation Protection Dosimetry, 2002. Vol. 102, No. 2. Pp. 153-162.

8. Minkin L„ Shapovalov A. S. Indoor radon entry: 30 years later // Iranian Journal of Radiation Research, 2008; 6 (1): pp. 1-6.

9. Yu K. N., Balendman R. V., Koo S. Y. and Cheung М. T. Silica Fume as a Radon Retardation from Concrete. Environ. Sci. Technol. 34, 2284-2287 (2000).

10. Najafi F. T. Radon Reduction System in the Construction of New Houses in Gainesville, Florida. Health Phys. 75, 514-517 (1998).

11. Yu K. N. The Effect of Typical Covering Materials on the Radon Exalation Rate from Concrete Surface. Radiat. Prot. Dosim. 48, 367-370 (1993).

12. De Jong, P. and van Dijk, W. Reduction of the Radon Entry Rate from Building Materials by Industrial Surface Coatings. Radiat. Prot. Dosim. 56, 179-183 (1994).

13. Van der Spoel W. H., van der Graaf, E. R. and de Meijer R. J. Foil Coverage of a Crawl-Space Floor: Measurements and Modeling of Radon Entry. Health Phys. 74, 581-593 (1998).

14. Minkin L. Thermodiffusion in Concrete Slab as a Driving Force of Indoor Radon Entry. Health Phys. 80, 151-156 (2001).

15. Minkin L. Thermal diffusion of radon in porous media. Radiation Protection Dosimetry Vol. 106, No. 3, pp. 267-272 (2003).

16. Duenas C., Fernandez М. C., Carretero J., Liger E. and Perez M. Release of Rn-222 from some soils. Ann. Geophys.-Atmos. Hydrospheres Space Sci. 15, 124-133 (1997).

17. Schubert C. and Schukz H. Diurnal radon variations in the upper soil layers and at the soil-air interface related to meteorological parameters. Health Phys. 83, 91-96 (2002).

18. Микляев П. С. Опыт применения изотопного геохимического метода для исследования условий переноса радона к дневной поверхности / П. С. Микляев, Т. Б. Петрова, А. А. Цапалов, А. П. Борисов // АНРИ, 2012. № 1. С. 15-20.

19. Гулабянц Л. А. Пособие по проектированию противорадоновой защиты жилых и общественных зданий. М.: НО «ФЭН-НАУКА», 2013. 52 с.


Review

For citations:


Bakaeva N.V., Kalaido A.V. THE CONDITIONS OF DIFFUSIONAL RADON INPUT INTO BUILDINGS AND FACILITIES. Modern Science and Innovations. 2017;(2):141-145. (In Russ.)

Views: 50


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)