Preview

Modern Science and Innovations

Advanced search

A SOBOLEV TYPE THEOREM IN VARIABLE EXPONENT LEBESGUE SPACES WITH WEIGHTS IN SIGMUND - BARI - STECHKIN CLASS

Abstract

For the Riesz potential operator there are proved weighted estimates within the framework of weighted Lebesgue spaces with variable exponent. In case is a bounded do-main, the order potential is allowed to be variable as well. The weight functions are radial type functions «fixed» to a finite point and/or to infinity and have a typical feature of Muckenhoupt-Wheeden weights: they may oscillate between two power functions. Conditions on weights are given in terms of their Boyd-type indices. An analogue of such a weighted estimate is also obtained for spherical potential oper-ators on the unit sphere.

About the Authors

Boris G. Vaculov
Southern Federal University
Russian Federation


Natalia G. Samko
Lulea University of Technology
Russian Federation


Stefan G. Samko
Universidade do Algarve
Russian Federation


References

1. Бари Н. К., Стечкин С. Б. Наилучшие приближения и дифференциальные свойства двух сопряженных функций // Труды Моск. мат. об-ва. 1956. № 5. С. 483-522.

2. Вакулов Б. Г., Самко С. Г. // ДАН РФ. Математика. 2005. Т. 403. № 1. С. 7-10.

3. Гусейнов А. И., Мухтаров Х. Ш. Введение в теорию нелинейных сингулярных интегральных уравнений // Наука. 1980. 416 с.

4. Karapetiants N. K., Samko N. G. Weighted theorems on factorial integrals in the generalized holder spaces H w (r) with the indices m è M // Fract. Calc. Appl. Anal. 2004. V. 7. № 4.w w

5. Kokilashvili N. K, Samko N. G , Samko S. G. The maximal operators in variable spaces Lp(×) (w, r) // Georgian Math. J. 2006. V. 13. № 1. P. 109-125.

6. Maligranda L. Indices and interpolations // Dissertationes Math (Rozprawy Mat.). 1985. P. 234-249.

7. Muckenhoupt B., Wheeden R. L. Weighted norm inequalities for fractional integrals // Trans. Amer. Math. Soc. 1974. Т. 192. P. 261-274.

8. Samko N. G. Singular integral operators integrals in weighted spaces with generalized holder cohdition // Proc. A. Razmadze Math. Inst. 1999. V. 120. P. 107-134.

9. Samko N. G. On non-equilibrated almost monotonic function of the Zigmung - Bary - Stechkin class // Real Anal. Exch. 2004/2005. V. 30. № 2. Р. 727-745.

10. Samko S. G. Convolution an potential type operator in Lp( x) // Integr. Transf. and Special Funct. 1998. V. 7. № 3-4. Р. 261-284.

11. Samko S. G. Hardy-Littlewood-Stein-Weiss inequality in the Lebegue spaces with variable exponent // Frac. Calc. and Appl. Anal. 2003. V. 6. № 4. P. 421-440.

12. Samko S. G., Vakulov B. G. Weighted Sobolev theorems with the variable exponent for spatial and spherical potential operators // J. Math, Anal. Appl. 2005. V. 310. Р. 229-246.

13. Samko S. G., Shargorodsky E., Vakulov B. G. Weighted Sobolev theorems with the variable exponent for spatial and spherical potential operators. // J. Math, Anal. Appl. 2006.

14. Stein E. M., Weiss G. Fractional integrals on n-dimensional Euclidian space // J. Math. and Mech. 1958. V. 7. № 4. Р. 503-514.


Review

For citations:


Vaculov B.G., Samko N.G., Samko S.G. A SOBOLEV TYPE THEOREM IN VARIABLE EXPONENT LEBESGUE SPACES WITH WEIGHTS IN SIGMUND - BARI - STECHKIN CLASS. Modern Science and Innovations. 2013;(3):33-39. (In Russ.)

Views: 63


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)