Preview

Modern Science and Innovations

Advanced search

DISCRETE WAVELET TRANSFORM SIMULATION FOR 3D MEDICAL IMAGING

https://doi.org/10.33236/2307-910X-2019-3-27-23-33

Abstract

Medical visualization is the process of obtaining visual information about the internal structures of the body for the purpose of their clinical analysis. All modern medical imaging systems use analog-to-digital data conversion, which leads to noise and distortion of information. Image noise reduction is an important issue in modern medical imaging systems.

About the Author

N. N. Nagornov
North-Caucasus Federal University
Russian Federation


References

1. Barnhill E. et al. Nonlinear multiscale regularisation in MR elastography: Towards fine feature mapping // Med. Image Anal. Elsevier, 2017. Vol. 35. P. 133-145.

2. Lucas L.F.R. et al. Lossless Compression of Medical Images Using 3-D Predictors // IEEE Trans. Med. Imaging. 2017. Vol. 36, № 11. P. 2250-2260.

3. Manjon J. V., Coupe P., Buades A. MRI noise estimation and denoising using non-local PCA // Med. Image Anal. Elsevier, 2015. Vol. 22, № 1. P. 35-47.

4. Schirrmacher F. et al. Temporal and volumetric denoising via quantile sparse image prior // Med. Image Anal. Elsevier, 2018. Vol. 48. P. 131 -146.

5. Xu Z. et al. Joint solution for PET image segmentation, denoising, and partial volume correction // Med. Image Anal. 2018. Vol. 46. P. 229-243.

6. Wu H., Huynh T.T., Souvenir R. Echocardiogram enhancement using supervised manifold denoising // Med. Image Anal. Elsevier, 2015. Vol. 24, № 1. P. 41-51.

7. Fang L. et al. 3-D adaptive sparsity based image compression with applications to optical coherence tomography // IEEE Trans. Med. Imaging. 2015. Vol. 34, № 6. P. 1306-1320.

8. Parikh S.S. et al. High Bit-Depth Medical Image Compression with HEVC // IEEE J. Biomed. Heal. Informatics. 2018. Vol. 22, № 2. P. 552-560.

9. Ravichandran D., Ahamad M.G., Dhivakar M.R.A. Performance analysis of three-dimensional medical image compression based on discrete wavelet transform // 2016 22nd Int. Conf. Virtual Syst. Multimed. IEEE, 2016. P. 1 -8.

10. Song X. et al. Three-dimensional separate descendant-based SPIHT algorithm for fast compression of high-resolution medical image sequences // IET Image Process. 2016. Vol. 11, № 1. P. 80-87.

11. Naveen C. et al. A simple and efficient approach for medical image security using chaos on EZW // ICAPR 2015-2015 8th Int. Conf. Adv. Pattern Recognit. IEEE, 2015. P. 1-6.

12. Bailey D.G. Design for Embedded Image Processing on FPGAs. Singapore: John Wiley & Sons (Asia) Pte Ltd, 2011.

13. Ahmad A., Ja'afar N.H., Amira A. FPGA-based implementation of 3-D Daubechies for medical image compression // 2012 IEEE-EMBS Conf. Biomed. Eng. Sci. IEEE, 2012. P. 683-688.

14. Elsayed M. et al. FPGA implementation of DWT EEG data compression for wireless body sensor networks // 2016 IEEE Conf. Wirel. Sensors. IEEE, 2016. P. 21-25.

15. Jiang R.M., Crookes D. FPGA Implementation of 3D Discrete Wavelet Transform for Real-Time Medical Imaging // 2007 18th Eur. Conf. Circuit Theory Des. IEEE, 2007. P. 519-522.

16. El Hassan E.M., Karim M. An FPGA-based implementation of a pre-processing stage for ECG signal analysis using DWT // 2014 Second World Conf. Complex Syst. IEEE, 2014. P. 649-654.

17. Vijendra V., Kulkarni M. ECG signal filtering using DWT haar wavelets coefficient techniques // 2016 Int. Conf. Emerg. Trends Eng. Technol. Sci. IEEE, 2016. P. 1-6.

18. Ballesteros Larrotta D.M., Moreno Enciso D.M., Gaona Barrera A.E. Compression of biomedical Signals on FPGA by DWT and run-length // 2010 IEEE ANDESCON Conf. Proceedings, ANDESCON 2010. IEEE, 2010. P. 1-5

19. Lalithakumari S. et al. Selection of optimum compression algorithms based on the characterization on feasibility for medical image // Biomed. Res. 2017. Vol. 28, № 13. 5633-5637 p

20. Daubechies I. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992

21. Vaidyanathan P.P. Multirate systems and filter banks. Prentice Hall, 1993. 911 p

22. Seber G.A.F., Wild C.J. Nonlinear Regression. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1989

23. Maddala G.S., Lahiri K. Introduction to econometrics. Wiley, 2009. 634 p

24. F-Distribution Tables . URL: http://socr.ucla.edu/Applets.dir/F_Table.html#FTable0.001 (07.06.2019)


Review

For citations:


Nagornov N.N. DISCRETE WAVELET TRANSFORM SIMULATION FOR 3D MEDICAL IMAGING. Modern Science and Innovations. 2019;(3):22-31. (In Russ.) https://doi.org/10.33236/2307-910X-2019-3-27-23-33

Views: 54


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)