МОДЕЛИРОВАНИЕ ВЕЙВЛЕТ-ОБРАБОТКИ ТРЕХМЕРНЫХ ИЗОБРАЖЕНИЙ В МЕДИЦИНЕ
https://doi.org/10.33236/2307-910X-2019-3-27-23-33
Аннотация
Список литературы
1. Barnhill E. et al. Nonlinear multiscale regularisation in MR elastography: Towards fine feature mapping // Med. Image Anal. Elsevier, 2017. Vol. 35. P. 133-145.
2. Lucas L.F.R. et al. Lossless Compression of Medical Images Using 3-D Predictors // IEEE Trans. Med. Imaging. 2017. Vol. 36, № 11. P. 2250-2260.
3. Manjon J. V., Coupe P., Buades A. MRI noise estimation and denoising using non-local PCA // Med. Image Anal. Elsevier, 2015. Vol. 22, № 1. P. 35-47.
4. Schirrmacher F. et al. Temporal and volumetric denoising via quantile sparse image prior // Med. Image Anal. Elsevier, 2018. Vol. 48. P. 131 -146.
5. Xu Z. et al. Joint solution for PET image segmentation, denoising, and partial volume correction // Med. Image Anal. 2018. Vol. 46. P. 229-243.
6. Wu H., Huynh T.T., Souvenir R. Echocardiogram enhancement using supervised manifold denoising // Med. Image Anal. Elsevier, 2015. Vol. 24, № 1. P. 41-51.
7. Fang L. et al. 3-D adaptive sparsity based image compression with applications to optical coherence tomography // IEEE Trans. Med. Imaging. 2015. Vol. 34, № 6. P. 1306-1320.
8. Parikh S.S. et al. High Bit-Depth Medical Image Compression with HEVC // IEEE J. Biomed. Heal. Informatics. 2018. Vol. 22, № 2. P. 552-560.
9. Ravichandran D., Ahamad M.G., Dhivakar M.R.A. Performance analysis of three-dimensional medical image compression based on discrete wavelet transform // 2016 22nd Int. Conf. Virtual Syst. Multimed. IEEE, 2016. P. 1 -8.
10. Song X. et al. Three-dimensional separate descendant-based SPIHT algorithm for fast compression of high-resolution medical image sequences // IET Image Process. 2016. Vol. 11, № 1. P. 80-87.
11. Naveen C. et al. A simple and efficient approach for medical image security using chaos on EZW // ICAPR 2015-2015 8th Int. Conf. Adv. Pattern Recognit. IEEE, 2015. P. 1-6.
12. Bailey D.G. Design for Embedded Image Processing on FPGAs. Singapore: John Wiley & Sons (Asia) Pte Ltd, 2011.
13. Ahmad A., Ja'afar N.H., Amira A. FPGA-based implementation of 3-D Daubechies for medical image compression // 2012 IEEE-EMBS Conf. Biomed. Eng. Sci. IEEE, 2012. P. 683-688.
14. Elsayed M. et al. FPGA implementation of DWT EEG data compression for wireless body sensor networks // 2016 IEEE Conf. Wirel. Sensors. IEEE, 2016. P. 21-25.
15. Jiang R.M., Crookes D. FPGA Implementation of 3D Discrete Wavelet Transform for Real-Time Medical Imaging // 2007 18th Eur. Conf. Circuit Theory Des. IEEE, 2007. P. 519-522.
16. El Hassan E.M., Karim M. An FPGA-based implementation of a pre-processing stage for ECG signal analysis using DWT // 2014 Second World Conf. Complex Syst. IEEE, 2014. P. 649-654.
17. Vijendra V., Kulkarni M. ECG signal filtering using DWT haar wavelets coefficient techniques // 2016 Int. Conf. Emerg. Trends Eng. Technol. Sci. IEEE, 2016. P. 1-6.
18. Ballesteros Larrotta D.M., Moreno Enciso D.M., Gaona Barrera A.E. Compression of biomedical Signals on FPGA by DWT and run-length // 2010 IEEE ANDESCON Conf. Proceedings, ANDESCON 2010. IEEE, 2010. P. 1-5
19. Lalithakumari S. et al. Selection of optimum compression algorithms based on the characterization on feasibility for medical image // Biomed. Res. 2017. Vol. 28, № 13. 5633-5637 p
20. Daubechies I. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992
21. Vaidyanathan P.P. Multirate systems and filter banks. Prentice Hall, 1993. 911 p
22. Seber G.A.F., Wild C.J. Nonlinear Regression. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1989
23. Maddala G.S., Lahiri K. Introduction to econometrics. Wiley, 2009. 634 p
24. F-Distribution Tables . URL: http://socr.ucla.edu/Applets.dir/F_Table.html#FTable0.001 (07.06.2019)
Рецензия
Для цитирования:
Нагорнов Н.Н. МОДЕЛИРОВАНИЕ ВЕЙВЛЕТ-ОБРАБОТКИ ТРЕХМЕРНЫХ ИЗОБРАЖЕНИЙ В МЕДИЦИНЕ. Современная наука и инновации. 2019;(3):22-31. https://doi.org/10.33236/2307-910X-2019-3-27-23-33
For citation:
Nagornov N.N. DISCRETE WAVELET TRANSFORM SIMULATION FOR 3D MEDICAL IMAGING. Modern Science and Innovations. 2019;(3):22-31. (In Russ.) https://doi.org/10.33236/2307-910X-2019-3-27-23-33