Preview

Modern Science and Innovations

Advanced search

THE NEURAL NETWORK MODEL FOR MULTIPARAMETER OBJECTS RECOGNITION

Abstract

The article contains the description of object detection and recognition method. The approach bases on the use of convolu-tional neural network with high-order neurons and the hypotheses removal.

About the Authors

Oksana Stanislavovna Mezentseva
North-Caucasus Federal University
Russian Federation


Nikita Alekseevich Lagunov
North-Caucasus Federal University
Russian Federation


Dmitry Viktorovich Mezentsev
North-Caucasus Federal University
Russian Federation


References

1. Erhan D. Scalable Object Detection using Deep Neural Networks / D. Erphan, C. Szegedy, A. Toshev, D. Anguelov // Computer Vision and Pattern Recognition. Columbus, 2014. pp. 2155-2162.

2. Sermanet P. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks / P. Ser-manet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun // Computer Vision and Pattern Recognition. Columbus, 2013. pp. 1082-1090.

3. Girshick R. Rich feature hierarchies for accurate object detection and semantic segmentation / R. Girshick, J. Donahue, T. Darrell, J. Malik // Computer Vision and Pattern Recognition. Columbus, 2014. pp. 580-587.

4. Cheng M.-M. BING: Binarized Normed Gradients for Objectness Estimation at 300fps / M.-M. Cheng, Z. Zhang, W. Y. Lin, P. Torr // Computer Vision and Pattern Recognition. Puerto-Rico, 2014. pp. 260-275.

5. Немков Р. М. Экспериментальное исследование и анализ влияния базовых параметров сверточных нейронных сетей на качество их обучения / Р. М. Немков, О. С. Мезенцева // Вестник Северо-Кавказского федерального университета. Ставрополь. 2013. №3 (36). C. 21-26.


Review

For citations:


Mezentseva O.S., Lagunov N.A., Mezentsev D.V. THE NEURAL NETWORK MODEL FOR MULTIPARAMETER OBJECTS RECOGNITION. Modern Science and Innovations. 2016;(4):33-38. (In Russ.)

Views: 67


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-910X (Print)