THE NEURAL NETWORK MODEL FOR MULTIPARAMETER OBJECTS RECOGNITION
Abstract
About the Authors
Oksana Stanislavovna MezentsevaRussian Federation
Nikita Alekseevich Lagunov
Russian Federation
Dmitry Viktorovich Mezentsev
Russian Federation
References
1. Erhan D. Scalable Object Detection using Deep Neural Networks / D. Erphan, C. Szegedy, A. Toshev, D. Anguelov // Computer Vision and Pattern Recognition. Columbus, 2014. pp. 2155-2162.
2. Sermanet P. OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks / P. Ser-manet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. LeCun // Computer Vision and Pattern Recognition. Columbus, 2013. pp. 1082-1090.
3. Girshick R. Rich feature hierarchies for accurate object detection and semantic segmentation / R. Girshick, J. Donahue, T. Darrell, J. Malik // Computer Vision and Pattern Recognition. Columbus, 2014. pp. 580-587.
4. Cheng M.-M. BING: Binarized Normed Gradients for Objectness Estimation at 300fps / M.-M. Cheng, Z. Zhang, W. Y. Lin, P. Torr // Computer Vision and Pattern Recognition. Puerto-Rico, 2014. pp. 260-275.
5. Немков Р. М. Экспериментальное исследование и анализ влияния базовых параметров сверточных нейронных сетей на качество их обучения / Р. М. Немков, О. С. Мезенцева // Вестник Северо-Кавказского федерального университета. Ставрополь. 2013. №3 (36). C. 21-26.
Review
For citations:
Mezentseva O.S., Lagunov N.A., Mezentsev D.V. THE NEURAL NETWORK MODEL FOR MULTIPARAMETER OBJECTS RECOGNITION. Modern Science and Innovations. 2016;(4):33-38. (In Russ.)