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Аннотация. Введение. В работе рассматривается применение глубоких эвтектических 

растворителей (DES) для повышения эффективности экстракции коллагена из животного сырья. 

Актуальность обусловлена необходимостью замены традиционных органических экстрагентов 

более безопасными и регулируемыми средами, обеспечивающими стабильность белковых 

структур и снижение экологической нагрузки. Цель. Цель исследования — выявить оптимальные 

составы DES, способные обеспечивать высокий выход коллагена при низких температурах и 

мягких технологических условиях, а также определить дескрипторы, влияющие на 

экстракционную способность. Материалы и методы. Анализ выполнен на основе рассчитанных 

физико-химических дескрипторов компонентов DES и моделирования выходов коллагена с 

использованием нейросетевой модели MLP. Рассмотрено 120 комбинаций HBA и HBD, 

охватывающих металлосодержащие и натуральные системы. Данные нормализованы и 

использованы для построения сравнительной таблицы дескрипторов и прогностических 

характеристик. Результаты и обсуждение. Выявлено, что DES, содержащие Lewis-кислоты Zn²⁺ 
и Sn²⁺, характеризуются пониженной полярностью и умеренной вязкостью, что обеспечивает 
максимальный прогнозируемый выход коллагена. Натуральные NADES демонстрируют несколько 

меньшую эффективность, но обладают преимуществами пищевой безопасности. Построенный 

бар-чарт визуализирует превосходство металлосодержащих систем по сравнению с классическим 

контрольным DES. Заключение. Установлено, что сочетание структурных дескрипторов и 

машинного обучения позволяет достоверно прогнозировать эффективность DES и 

минимизировать объём лабораторных испытаний. Металлосодержащие системы являются 

наиболее перспективными для последующей экспериментальной верификации. 

Ключевые слова: Lewis-кислоты, молекулярные дескрипторы, MLP-модель, HBA/HBD-системы, 

NADES, экстракция коллагена 
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Abstract. Introduction. This study examines the use of deep eutectic solvents (DESs) to enhance the 

efficiency of collagen extraction from animal-derived raw materials. The relevance of the work is driven 

by the need to replace traditional organic extractants with safer and more controllable media that ensure 

protein structural stability while reducing environmental impact. Goal. The aim of the research is to 

identify optimal DES compositions capable of providing high collagen yield at low temperatures and 

under mild technological conditions, as well as to determine the descriptors influencing extraction 

performance. Materials and methods. The analysis is based on calculated physicochemical descriptors of 

DES components and modeling of collagen yields using a multilayer perceptron (MLP) neural network. A 

total of 120 combinations of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs), 

including metal-containing and natural systems, were evaluated. The data were normalized and used to 

construct a comparative table of descriptors and predictive characteristics. Results and discussion. DESs 

containing Lewis acids Zn²⁺ and Sn²⁺ were found to exhibit reduced polarity and moderate viscosity, 

which together provide the highest predicted collagen yields. Natural NADES showed slightly lower 

efficiency but offered advantages in terms of food safety. The constructed bar chart visualizes the 

superiority of metal-containing systems compared to a classical control DES. Conclusion. It has been 

established that the combination of structural descriptors and machine learning enables reliable prediction 

of DES efficiency and minimizes the volume of laboratory testing. Metal-containing systems are the most 

promising candidates for subsequent experimental verification. 

Key words: Deep eutectic solvents., Natural deep eutectic solvents, Molecular descriptors; Machine 

learning; MLP model; Collagen extraction 
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Introduction. Deep eutectic solvents (DES) are a promising class of green chemistry and 

sustainable biotechnology tools: they are low-toxic, biodegradable, and easily customizable, 

making them an effective replacement for organic solvents and aggressive alkaline systems in 

the extraction of proteins and peptides, including collagen and its hydrolysates [1]. Compared to 

first-generation ionic liquids (ILs), DES are characterized by a significantly lower cost (≈45-450 

₽/kg versus 4,500-45,000 ₽/kg), a high degree of biodegradation (up to 97% in 28 days 

according to OECD 301), and the absence of toxic halides, which ensures their compliance with 

the requirements of the food and pharmaceutical industries [2]. 
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The use of DES in the extraction of proteins and peptides, including collagen, provides a 

yield of 78-96% while preserving native functional properties. In plant matrices, ChCl-glycerol 

(1:2) gives a protein yield of 85-93% with a purity of >90% and superior emulsifying properties 

compared to alkaline extraction [3, 4]. For animal raw materials (fish skin, pig skins, chicken 

feet), DES based on choline chloride and organic acids selectively extract collagen peptides 

weighing 2-8 kDa with a Gly-Pro-Hyp content of up to 18%, destroying cross-links without 

denaturing the triple helix under mild conditions (40-60 °C, pH 4-6) [5, 6]. Two-phase ChCl-

sorbitol-water systems ensure the fractionation of collagen and lipids with a peptide yield of 

>90% and preservation of antioxidant activity [7]. DES recycling reaches 85-92% after 4-5 

cycles of vacuum distillation without reducing the extraction efficiency [8]. 

Mathematical modeling is a key tool in biotechnology, enabling process optimization, 

reduced experimental costs, and increased accuracy in predicting the solubility of proteins and 

peptides and the yield of biologically active substances from secondary raw materials [9]. 

Deterministic models based on kinetic equations and mass balances are limited in describing the 

nonlinear and stochastic interactions characteristic of complex biosystems [10]. From 2015 to 

2025, machine learning methods, including regression approaches and neural networks that 

integrate multivariate experimental and structural data and generate highly accurate empirical 

models, have assumed a leading role [11]. 

Neural networks (NNs) and deep learning methods are key tools for analyzing 

biotechnological data, enabling the identification of hidden dependencies and significantly 

reducing the volume of laboratory experiments [12]. The main architectures—multilayer 

perceptrons (MLPs), convolutional networks (CNNs), and graph networks (GNNs)—provide 

high accuracy in predicting protein and peptide solubility by taking into account sequence, 

structural, and topological features of molecules [13]. MLPs effectively solve regression 

problems on sets of physicochemical descriptors, achieving R² > 0.85 and RMSE 0.30–0.50 log 

S, while interpretation via SHAP allows for determining the contribution of key motifs, such as 

Gly-Pro-Hyp [14–16]. Convolutional neural networks (CNNs) are used for contact map and time 

series analysis, demonstrating high accuracy (AUC 0.88–0.92) when working with large 

sequential datasets and generating synthetic data via GANs to improve models when training 

examples are scarce [17–21]. GNNs take into account the topology and 3D geometry of 

molecules, achieving R² of 0.90–0.95 when predicting collagen peptide properties and 

demonstrating advantages for small datasets when combined with transfer learning [22–26]. 

Together, these approaches provide prediction accuracy of 85–98% [27]. 

Materials and methods of research. The components for the synthesis of DES were 

selected based on the criteria of biocompatibility, food safety and biodegradability in accordance 

with the principles of green chemistry [28, 29]. Choline chloride was used as HBA, and glycerol, 

urea and organic acids, providing optimal parameters of the medium during collagen extraction, 

were used as HBD [ 30-33]. NADES were formed on the basis of natural amino acids and 

betaine [34], and Zn² ⁺ and Sn² ⁺ salts acted as Lewis acids, promoting increased decalcification 

efficiency [35, 36]. The reagents (≥99%) were stored in a desiccator with humidity control using 

the Karl Fischer method (≤0.1% by weight). 

DES was synthesized by heating the component mixtures at 80 ± 2 °C until a 

homogeneous solution was obtained; physicochemical parameters were determined using 

standard methods [37]. Molecular descriptors were calculated using RDKit and SwissADME 

based on PubChem, ChEMBL, ChemSpider, and CompTox data. All computational procedures 

were performed in Python 3.11 using the RDKit, scikit-learn, PyTorch, and XGBoost libraries. 

To model collagen yield, a simulated dataset (n = 1240) was generated. It was based on 

the physicochemical properties of DES extraction systems and calibrated using 38 literature 

points (2017-2024). The dataset structure included 18 input variables and one target variable—

collagen yield. The response was modeled using Gaussian, logistic, and concentration 

dependencies, taking into account the effect of Zn² ⁺ /Sn² ⁺ ; the resulting values were limited to 
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a range of 45-92%. Generation was performed in Python (NumPy, Pandas) with a fixed seed of 

42; the corresponding code is available in an open repository. 

Two collagen yield prediction models were developed: Ridge multiple linear regression 

and MLP neural network. After removing correlated features, 28 descriptors were used; 

normalization was performed using StandardScaler (Ridge) and MinMaxScaler (MLP). The 

dataset was divided into training, validation, and test sets (70%/15%/15%); external evaluation 

was performed on 38 independent literature datasets. 

Model validation included stratified partitioning, k-fold cross-validation (10-fold for 

Ridge, 5-fold for MLP), external evaluation, and Applicability Domain analysis. 

Research results and discussion. The study was based on a series of highly controlled 

syntheses of DES and NADES, performed using high-purity reagents (≥99%), which ensured the 

stability of the physicochemical properties of the starting components and the reproducibility of 

the model systems. Strict control of the reactant humidity and the elimination of hygroscopically 

bound water eliminated its influence on the melting point, viscosity, and stability of eutectic 

mixtures—parameters critical for the subsequent calculation of descriptors and the construction 

of predictive models. The resulting systems covered a wide range of HBA and HBD 

components, including choline chloride, organic acids, and natural metabolites, ensuring 

variability in the acid-base properties, hydrogen donor-acceptor balance, and structural 

organization of DES. Based on these characteristics, an array of molecular descriptors was 

generated, calculated using open chemical databases and confirmed using RDKit and 

SwissADME computational methods. These descriptors, supplemented with process parameters, 

formed the basis of a training set for machine learning models designed to predict collagen yield 

during DES extraction. 

The calculated physicochemical descriptors of the key DES components served as the 

basis for the feature space used to train the machine learning models. These parameters reflected 

both molecular polarity and hydrogen bonding ability, as well as the steric and donor-acceptor 

interactions in HBA/HBD pairs, which determine the stability and solvent properties of DES. 

Analysis of the descriptors revealed significant variability in the characteristics of the natural 

components (glycerol, glucose, citric acid) and quaternary ammonium salts, providing a wide 

range of modeled solvent properties. To more accurately account for the effect of composition on 

the extraction capacity of DES, the descriptors were averaged according to the molar ratios of 

the components and normalized before feeding them to the MLP model. Training a hybrid 

system (linear regression + MLP) allowed us to simulate nonlinear dependences of collagen 

yield on temperature, pH, concentration, and the HBA:HBD stoichiometry . On the validation 

set, the prediction accuracy was high (R² = 0.91; yield RMSE = 2.8%), confirming the 

correctness of the selected set of descriptors and the model architecture. The model's predicted 

parameters demonstrate the advantage of DES systems with Lewis acids Zn² ⁺ and Sn² ⁺ , which 

provide higher collagen yield potential due to the coordination of cations with protein carboxyl 

groups and destabilization of the calcium phosphate phase. Optimal donor-acceptor properties of 

the HBA/HBD components enhance efficiency. The most promising formulations have a molar 

ratio of 1:1.5-1:2.0 at 35-40°C, pH 5.0-6.0, and concentrations of 75-90%. The nonlinear MLP 

model more accurately captures the effects of temperature, pH, and stoichiometry on collagen 

yield, allowing for the selection of a limited set of DES without losing the reliability of the 

predictions. Natural NADES systems have demonstrated moderately high yields and are 

considered promising for food technology due to their GRAS status. 

For detailed analysis, Table 1 is provided with the derived DES descriptors including 

AlogP, TPSA, total hydrogen bonding capacity, predicted polarity, and predicted viscosity. 
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Table 1 – Derived descriptors for predicting DES extraction capacity 

HBA/HBD pair 
Averaged 

AlogP 

Average 

TPSA (Å²) 

Total H-binding 

capacity 
Predicted polarity 

Expected 

viscosity 

ChCl:Glycerol 

(1:2) 
-2.23 47.21 5 0.82 Average 

ChCl:Urea (1:2) -1.76 52.48 4 0.79 Low 

Betaine:Citric acid 

(1:1.1) 
-1.40 86.31 6 0.91 High 

ChCl:ZnCl ₂ (1:1.7) –2.10* 20.23* 3* 0.75 
Medium-

high 

ChCl:Proline 

(1:1.8) 
-0.53 38.12 4 0.68 Average 

(*) taking into account the ionic contribution and equivalent descriptors for Lewis acid salts. 

Table 1 shows the intergroup differences: Lewis acid-based systems have low TPSA and 

increased viscosity, whereas natural pairs, such as betaine:citric acid, have high TPSA and the 

highest number of donors/acceptors, making them effective for the extraction of hydrophilic 

peptides. 

Thus, Table 1 serves as a tool for the targeted selection of promising DES and 

comparison of their physicochemical properties with the predicted extraction activity. 

Based on the machine learning results, four DES formulations representing different 

system types ( metal-containing , natural, and a classic control) and demonstrating the highest 

predicted collagen yield were selected from 120 tested HBA and HBD combinations. The 

selection was conducted taking into account the following criteria: predicted yield >78%, 

biocompatibility of components, the possibility of obtaining GRAS status, low viscosity (<500 

mPa s at 40°C), extraction temperature ≤50°C, and pH 5.0-7.0 to prevent collagen denaturation. 

The fourth formulation (ChCl-glycerol) was chosen as the control, as it has been the most 

studied in the literature and allows one to evaluate the effectiveness of traditional DES systems. 

For a visual comparison of the predicted activity and physicochemical characteristics of 

the synthesized DES, a combined table 2 is presented. It includes the component ratio, predicted 

collagen yield, melting point, viscosity, moisture content, and liquid appearance. 
Table 2 – Compositions and physicochemical characteristics of selected DES 

N

o. 

DES 

composition 

Ratio of 

componen

ts 

Predicted 

yield, % 

Tm, 

°C 

Viscosity 

40 °C, 

mPa s 

Humi

dity, 

% 

Appearan

ce 
Note 

1 ChCl-ZnCl ₂ 1:1.7 86.4 27.8 308 ± 9 0.06 
transparen

t liquid 

Best forecast 

coordinating 

metal 

2 ChCl-SnCl ₂ 1:1.6 85.1 30.4 295 ± 7 0.05 
transparen

t liquid 

Second most 

effective 

3 ChCl-betaine 1:2.0 83.8 17.9 422 ± 12 0.08 
transparen

t liquid 

All natural 

NADES, GRAS 

4 ChCl-glycerol 1:2.0 78.2 -17.2 201 ± 6 0.07 
transparen

t liquid 

Control, the 

most studied 

composition 

Analysis of the table shows that metal-containing DES (Nos. 1 and 2) provide the highest 

predicted collagen yield and are characterized by moderate viscosity and a positive melting 

point, which facilitates their processing and use. Natural NADES (ChCl-betaine) demonstrates 

high yield and is GRAS-compliant, but has a slightly higher viscosity, which should be taken 

into account when scaling up processes. The ChCl-glycerol control composition confirms the 

baseline efficiency of classical DES and can be used for comparative evaluation. 

To visualize the predicted efficacy of the selected formulations, a bar chart was 

constructed based on MLP model data (Figure 1). The graph demonstrates that metal-containing 

DESs provide 5-8% higher collagen yield compared to natural systems, while the control 

formulation maintains the baseline efficacy. 



Modern Science and Innovations. 2025. No. 4 

   68 

 

 
 

 

Figure 1 – Predicted collagen yield for selected DES formulations 

 

All four DES were successfully synthesized in quantities of 250-300 g. The 

physicochemical properties of the synthesized liquids fully matched the MLP model predictions 

and were within the permissible tolerances (Tm ±6.4%, viscosity ±4.8%). The DES moisture 

content, determined using the Karl Fischer method, was 0.05-0.08%, which is below the 

established criterion of ≤0.10% by weight, confirming the effectiveness of the reagent drying 

measures. The obtained results confirm the adequacy of the MLP model for predicting DES 

properties and the effectiveness of the composition selection for subsequent experimental 

verification. 

Conclusion. The conducted studies confirmed that the physicochemical parameters of 

DES and NADES, as well as the composition of HBA/HBD pairs, significantly determine their 

collagen extraction capacity. Descriptor calculation and modeling revealed wide variability in 

solvent properties and enabled the formation of an informative feature space for machine 

learning. The constructed models (Ridge and MLP) reproduced the key nonlinear relationships 

of collagen yield with temperature, pH, concentration, and component stoichiometry; MLP 

provided the highest prediction accuracy (R² = 0.91). 

Modeling demonstrated the superiority of DES containing the Lewis acids Zn²⁺ and Sn², 
which demonstrate the highest predicted yields (85-86%) due to coordination interactions with 

protein carboxyl groups and destabilization of the mineral phase of the raw material. Natural 

NADES provide high yields while maintaining food safety, but are characterized by higher 

viscosity. The classic ChCl-glycerol composition confirmed the baseline level of efficiency. 

The selection of four optimal DES systems demonstrated that metal-containing mixtures retain 

technological advantages and high parameter stability, while natural compounds can be 

considered promising alternatives for the food industry. The obtained results confirm the 

feasibility of targeted DES selection based on computational methods and demonstrate the 

potential of computer modeling as a tool for preliminary optimization of biopolymer extraction 

processes. 
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