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AnHotanusi. Beedenue. B pabore paccMmaTpuBaeTcs TpPHMEHEHHE TIYOOKHX OBTEKTUYECKHX
pactBoputeneid (DES) ans nossimenns 3pQGeKTHBHOCTH 3KCTPAKIMN KOJITareHa W3 KUBOTHOTO CHIPHSL.
AKTyanbHOCTh 0OYCJIOBI€HAa HEOOXOAWMOCTBIO 3aMEHBl TPAIULIMOHHBIX OPraHUYECKUX HKCTPareHTOB
Oonee 0Oe30MacHBIMM M PETYIHPYEMBIMH CpelaMy, OOECHEeYMBAIOIIMMU CTAOMIBHOCTH OEIKOBBIX
CTPYKTYp U CHIKEHHUE IKOJIOTHYeCcKON Harpy3ku. Iens. llenb viccnenoBaHusi — BBISIBUTH ONTHMAJIbHBIE
coctaBsl DES, cnocoOHble obecrieunBaTh BBICOKHH BBIXOJ KOJUIAr€Ha IMPH HU3KHX TeMIeparypax |
MSATKHX TEXHOJOTMYECKHX YCIOBMSX, a TakkKe OIpPEICINTh JECKPHUNTOPHI, BIHAIOIIUE Ha
IKCTPAKIMOHHYIO cIIOcOOHOCTh. Mamepuanst u memoosl. AHaIU3 BHIIIOTHEH HA OCHOBE PACCUYMTAHHBIX
(U3NKO-XUMHUYECKUX JIECKpUNITOPOB KoMIOHeHTOB DES u MojenupoBaHUsl BBIXOJOB KOJUIAareHa C
UCTIONb30BaHNeM HelpocereBoii mozenu MLP. Paccmorpeno 120 xomo6unammiit HBA u HBD,
OXBaTBHIBAIOIIMX METAJUIOCOACPKAIUE W HATypaJlbHble CHUCTEMBI. JlaHHBIE HOpPMaJIN30BaHBl U
UCITIOJIb30BaHbl ISl TIOCTPOCHHS CPAaBHUTENBHOH TaONUIBl JECKPUITOPOB U  MPOTHOCTHYCCKHX
XapakTepuctuk. Pesyremamut u oocyscoenue. Boisisneno, uro DES, conepxamue Lewis-kucnotsr Zn?*
U Sn**, XapakTepu3ylTCs MOHIKCHHOW MOJSAPHOCTBIO W YMEPEHHOH BSI3KOCTBIO, YTO O0ECIICYUBACT
MaKCHMaJbHBII MPOTHO3UPYEMBIH BbIxoA kojutareHa. Harypansasie NADES neMOHCTpHUPYIOT HECKOJIBKO
MEHBINYI0 3()PEeKTUBHOCTh, HO 00JANAIOT MPEeHMyIecTBaMK MHIEBON OezomacHocTH. [locTpoeHHbIH
Oap-4apT BU3yaIM3UPYyET MPEBOCXOICTBO METAIIOCOAEPIKAIINX CHCTEM IO CPAaBHEHHUIO C KJIACCHUYECKUM
koHTposibHBIM DES. 3aknrouenue. YcraHOBNEHO, YTO COYETaHHE CTPYKTYpHBIX JAECKPUITOPOB U
MAIIMHHOTO  OOydYeHHs IMO3BOJSIET JIOCTOBEPHO NPOTHO3WpoBaTh  dddexTrBHOCT DES 1
MUHUMHU3UPOBAaTh 00BEM J1a0OpPaTOPHBIX HCHBITAaHWKA. MeTtamoconepKale CHUCTEMBI  SBISIOTCS
Han0oJiee NePCHEKTUBHBIMH IS IOCIEAYIOMIEH 3KCIIEPUMEHTAIBHON BEpUpUKAIINH.

KarwueBrble cioBa: Lewis-KUCIIOTHI, MOJIEKYIIsIpHBIE Jleckpuntopel, MLP-monens, HBA/HBD-cucremsl,
NADES, skcTpakius KoyuiareHa
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Abstract. Introduction. This study examines the use of deep eutectic solvents (DESs) to enhance the
efficiency of collagen extraction from animal-derived raw materials. The relevance of the work is driven
by the need to replace traditional organic extractants with safer and more controllable media that ensure
protein structural stability while reducing environmental impact. Goal. The aim of the research is to
identify optimal DES compositions capable of providing high collagen yield at low temperatures and
under mild technological conditions, as well as to determine the descriptors influencing extraction
performance. Materials and methods. The analysis is based on calculated physicochemical descriptors of
DES components and modeling of collagen yields using a multilayer perceptron (MLP) neural network. A
total of 120 combinations of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs),
including metal-containing and natural systems, were evaluated. The data were normalized and used to
construct a comparative table of descriptors and predictive characteristics. Results and discussion. DESs
containing Lewis acids Zn?" and Sn** were found to exhibit reduced polarity and moderate viscosity,
which together provide the highest predicted collagen yields. Natural NADES showed slightly lower
efficiency but offered advantages in terms of food safety. The constructed bar chart visualizes the
superiority of metal-containing systems compared to a classical control DES. Conclusion. It has been
established that the combination of structural descriptors and machine learning enables reliable prediction
of DES efficiency and minimizes the volume of laboratory testing. Metal-containing systems are the most
promising candidates for subsequent experimental verification.
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Introduction. Deep eutectic solvents (DES) are a promising class of green chemistry and
sustainable biotechnology tools: they are low-toxic, biodegradable, and easily customizable,
making them an effective replacement for organic solvents and aggressive alkaline systems in
the extraction of proteins and peptides, including collagen and its hydrolysates [1]. Compared to
first-generation ionic liquids (ILs), DES are characterized by a significantly lower cost (=45-450
P/kg versus 4,500-45,000 P/kg), a high degree of biodegradation (up to 97% in 28 days
according to OECD 301), and the absence of toxic halides, which ensures their compliance with
the requirements of the food and pharmaceutical industries [2].
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The use of DES in the extraction of proteins and peptides, including collagen, provides a
yield of 78-96% while preserving native functional properties. In plant matrices, ChCl-glycerol
(1:2) gives a protein yield of 85-93% with a purity of >90% and superior emulsifying properties
compared to alkaline extraction [3, 4]. For animal raw materials (fish skin, pig skins, chicken
feet), DES based on choline chloride and organic acids selectively extract collagen peptides
weighing 2-8 kDa with a Gly-Pro-Hyp content of up to 18%, destroying cross-links without
denaturing the triple helix under mild conditions (40-60 °C, pH 4-6) [5, 6]. Two-phase ChClI-
sorbitol-water systems ensure the fractionation of collagen and lipids with a peptide yield of
>90% and preservation of antioxidant activity [7]. DES recycling reaches 85-92% after 4-5
cycles of vacuum distillation without reducing the extraction efficiency [8].

Mathematical modeling is a key tool in biotechnology, enabling process optimization,
reduced experimental costs, and increased accuracy in predicting the solubility of proteins and
peptides and the yield of biologically active substances from secondary raw materials [9].
Deterministic models based on kinetic equations and mass balances are limited in describing the
nonlinear and stochastic interactions characteristic of complex biosystems [10]. From 2015 to
2025, machine learning methods, including regression approaches and neural networks that
integrate multivariate experimental and structural data and generate highly accurate empirical
models, have assumed a leading role [11].

Neural networks (NNs) and deep learning methods are key tools for analyzing
biotechnological data, enabling the identification of hidden dependencies and significantly
reducing the volume of laboratory experiments [12]. The main architectures—multilayer
perceptrons (MLPs), convolutional networks (CNNs), and graph networks (GNNs)—provide
high accuracy in predicting protein and peptide solubility by taking into account sequence,
structural, and topological features of molecules [13]. MLPs effectively solve regression
problems on sets of physicochemical descriptors, achieving R > 0.85 and RMSE 0.30-0.50 log
S, while interpretation via SHAP allows for determining the contribution of key motifs, such as
Gly-Pro-Hyp [14-16]. Convolutional neural networks (CNNs) are used for contact map and time
series analysis, demonstrating high accuracy (AUC 0.88-0.92) when working with large
sequential datasets and generating synthetic data via GANs to improve models when training
examples are scarce [17-21]. GNNs take into account the topology and 3D geometry of
molecules, achieving R?* of 0.90-0.95 when predicting collagen peptide properties and
demonstrating advantages for small datasets when combined with transfer learning [22-26].
Together, these approaches provide prediction accuracy of 85-98% [27].

Materials and methods of research. The components for the synthesis of DES were
selected based on the criteria of biocompatibility, food safety and biodegradability in accordance
with the principles of green chemistry [28, 29]. Choline chloride was used as HBA, and glycerol,
urea and organic acids, providing optimal parameters of the medium during collagen extraction,
were used as HBD [ 30-33]. NADES were formed on the basis of natural amino acids and
betaine [34], and Zn? * and Sn? * salts acted as Lewis acids, promoting increased decalcification
efficiency [35, 36]. The reagents (>99%) were stored in a desiccator with humidity control using
the Karl Fischer method (<0.1% by weight).

DES was synthesized by heating the component mixtures at 80 £ 2 °C until a
homogeneous solution was obtained; physicochemical parameters were determined using
standard methods [37]. Molecular descriptors were calculated using RDKit and SwissADME
based on PubChem, ChEMBL, ChemSpider, and CompTox data. All computational procedures
were performed in Python 3.11 using the RDKit, scikit-learn, PyTorch, and XGBoost libraries.

To model collagen yield, a simulated dataset (n = 1240) was generated. It was based on
the physicochemical properties of DES extraction systems and calibrated using 38 literature
points (2017-2024). The dataset structure included 18 input variables and one target variable—
collagen yield. The response was modeled using Gaussian, logistic, and concentration
dependencies, taking into account the effect of Zn? * /Sn? * ; the resulting values were limited to
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a range of 45-92%. Generation was performed in Python (NumPy, Pandas) with a fixed seed of
42; the corresponding code is available in an open repository.

Two collagen yield prediction models were developed: Ridge multiple linear regression
and MLP neural network. After removing correlated features, 28 descriptors were used;
normalization was performed using StandardScaler (Ridge) and MinMaxScaler (MLP). The
dataset was divided into training, validation, and test sets (70%/15%/15%); external evaluation
was performed on 38 independent literature datasets.

Model validation included stratified partitioning, k-fold cross-validation (10-fold for
Ridge, 5-fold for MLP), external evaluation, and Applicability Domain analysis.

Research results and discussion. The study was based on a series of highly controlled
syntheses of DES and NADES, performed using high-purity reagents (>99%), which ensured the
stability of the physicochemical properties of the starting components and the reproducibility of
the model systems. Strict control of the reactant humidity and the elimination of hygroscopically
bound water eliminated its influence on the melting point, viscosity, and stability of eutectic
mixtures—parameters critical for the subsequent calculation of descriptors and the construction
of predictive models. The resulting systems covered a wide range of HBA and HBD
components, including choline chloride, organic acids, and natural metabolites, ensuring
variability in the acid-base properties, hydrogen donor-acceptor balance, and structural
organization of DES. Based on these characteristics, an array of molecular descriptors was
generated, calculated using open chemical databases and confirmed using RDKit and
SwissADME computational methods. These descriptors, supplemented with process parameters,
formed the basis of a training set for machine learning models designed to predict collagen yield
during DES extraction.

The calculated physicochemical descriptors of the key DES components served as the
basis for the feature space used to train the machine learning models. These parameters reflected
both molecular polarity and hydrogen bonding ability, as well as the steric and donor-acceptor
interactions in HBA/HBD pairs, which determine the stability and solvent properties of DES.
Analysis of the descriptors revealed significant variability in the characteristics of the natural
components (glycerol, glucose, citric acid) and quaternary ammonium salts, providing a wide
range of modeled solvent properties. To more accurately account for the effect of composition on
the extraction capacity of DES, the descriptors were averaged according to the molar ratios of
the components and normalized before feeding them to the MLP model. Training a hybrid
system (linear regression + MLP) allowed us to simulate nonlinear dependences of collagen
yield on temperature, pH, concentration, and the HBA:HBD stoichiometry . On the validation
set, the prediction accuracy was high (R?* = 0.91; yield RMSE = 2.8%), confirming the
correctness of the selected set of descriptors and the model architecture. The model's predicted
parameters demonstrate the advantage of DES systems with Lewis acids Zn? * and Sn? *, which
provide higher collagen yield potential due to the coordination of cations with protein carboxyl
groups and destabilization of the calcium phosphate phase. Optimal donor-acceptor properties of
the HBA/HBD components enhance efficiency. The most promising formulations have a molar
ratio of 1:1.5-1:2.0 at 35-40°C, pH 5.0-6.0, and concentrations of 75-90%. The nonlinear MLP
model more accurately captures the effects of temperature, pH, and stoichiometry on collagen
yield, allowing for the selection of a limited set of DES without losing the reliability of the
predictions. Natural NADES systems have demonstrated moderately high yields and are
considered promising for food technology due to their GRAS status.

For detailed analysis, Table 1 is provided with the derived DES descriptors including
AlogP, TPSA, total hydrogen bonding capacity, predicted polarity, and predicted viscosity.
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Table 1 — Derived descriptors for predicting DES extraction capacity

HBA/HBD pair A§121¥d T‘;‘)‘;:zzg;) Totaclall-)l;lc)::lyding Predicted polarity Ei‘s[:):g]i
Cha{ﬁg"eml 223 47.21 5 0.82 Average
ChCl:Urea (1:2) -1.76 52.48 4 0.79 Low
Betaine:Citric acid 140 86.31 6 0.91 High
(1:1.1)
ChCl1:ZnCl 5 (1:1.7) ~2.10% 20.23* 3% 0.75 M;‘ii;‘lm'
Chfllfll) rg)“ne 0.53 38.12 4 0.68 Average

(*) taking into account the ionic contribution and equivalent descriptors for Lewis acid salts.

Table 1 shows the intergroup differences: Lewis acid-based systems have low TPSA and
increased viscosity, whereas natural pairs, such as betaine:citric acid, have high TPSA and the
highest number of donors/acceptors, making them effective for the extraction of hydrophilic
peptides.

Thus, Table 1 serves as a tool for the targeted selection of promising DES and
comparison of their physicochemical properties with the predicted extraction activity.

Based on the machine learning results, four DES formulations representing different
system types ( metal-containing , natural, and a classic control) and demonstrating the highest
predicted collagen yield were selected from 120 tested HBA and HBD combinations. The
selection was conducted taking into account the following criteria: predicted yield >78%,
biocompatibility of components, the possibility of obtaining GRAS status, low viscosity (<500
mPa s at 40°C), extraction temperature <50°C, and pH 5.0-7.0 to prevent collagen denaturation.
The fourth formulation (ChCl-glycerol) was chosen as the control, as it has been the most
studied in the literature and allows one to evaluate the effectiveness of traditional DES systems.

For a visual comparison of the predicted activity and physicochemical characteristics of
the synthesized DES, a combined table 2 is presented. It includes the component ratio, predicted
collagen yield, melting point, viscosity, moisture content, and liquid appearance.

Table 2 — Compositions and physicochemical characteristics of selected DES

N DES Ratio of Predicted Tm, Vlscgs“y HE“m Appearan
.. componen . o o 40 °C, dity, Note
0. | composition ts yield, % C mPas o ce
(1]
transparen Best forecast
1 ChCl-ZnCl , 1:1.7 86.4 27.8 308+9 0.06 Spa coordinating
t liquid
metal
2 | ChCI-SnCl, 1:1.6 85.1 304 | 295+7 | 005 | ransparen | Second most
t liquid effective
. ) transparen All natural
3 | ChCl-betaine 1:2.0 83.8 17.9 422 +£12 0.08 tliquid | NADES, GRAS
transparen Control, the
4 | ChCl-glycerol 1:2.0 78.2 -17.2 2016 0.07 tli puid most studied
d composition

Analysis of the table shows that metal-containing DES (Nos. 1 and 2) provide the highest
predicted collagen yield and are characterized by moderate viscosity and a positive melting
point, which facilitates their processing and use. Natural NADES (ChCl-betaine) demonstrates
high yield and is GRAS-compliant, but has a slightly higher viscosity, which should be taken
into account when scaling up processes. The ChCl-glycerol control composition confirms the
baseline efficiency of classical DES and can be used for comparative evaluation.

To visualize the predicted efficacy of the selected formulations, a bar chart was
constructed based on MLP model data (Figure 1). The graph demonstrates that metal-containing
DESs provide 5-8% higher collagen yield compared to natural systems, while the control
formulation maintains the baseline efficacy.

67



Modern Science and Innovations. 2025. No. 4

90.0

87.5 1
86.4%

-]
o
<]

@
N
v

MporHo3vpyemblil BbIX0A KonnareHa, %
~ [=2]
~ =)
w [=]

~
w
(=]

72.5 1

ChCl-ZnClz 1:1,7 ChCI-5nClz 1:1,6 ChCl-6eTauH 1:2,0 ChCl-rnuuepuH 1:2,0

Figure 1 — Predicted collagen yield for selected DES formulations

All four DES were successfully synthesized in quantities of 250-300 g. The
physicochemical properties of the synthesized liquids fully matched the MLP model predictions
and were within the permissible tolerances (Tm £6.4%, viscosity +4.8%). The DES moisture
content, determined using the Karl Fischer method, was 0.05-0.08%, which is below the
established criterion of <0.10% by weight, confirming the effectiveness of the reagent drying
measures. The obtained results confirm the adequacy of the MLP model for predicting DES
properties and the effectiveness of the composition selection for subsequent experimental
verification.

Conclusion. The conducted studies confirmed that the physicochemical parameters of
DES and NADES, as well as the composition of HBA/HBD pairs, significantly determine their
collagen extraction capacity. Descriptor calculation and modeling revealed wide variability in
solvent properties and enabled the formation of an informative feature space for machine
learning. The constructed models (Ridge and MLP) reproduced the key nonlinear relationships
of collagen yield with temperature, pH, concentration, and component stoichiometry; MLP
provided the highest prediction accuracy (R?=0.91).

Modeling demonstrated the superiority of DES containing the Lewis acids Zn** and Sn?,
which demonstrate the highest predicted yields (85-86%) due to coordination interactions with
protein carboxyl groups and destabilization of the mineral phase of the raw material. Natural
NADES provide high yields while maintaining food safety, but are characterized by higher
viscosity. The classic ChCl-glycerol composition confirmed the baseline level of efficiency.

The selection of four optimal DES systems demonstrated that metal-containing mixtures retain
technological advantages and high parameter stability, while natural compounds can be
considered promising alternatives for the food industry. The obtained results confirm the
feasibility of targeted DES selection based on computational methods and demonstrate the
potential of computer modeling as a tool for preliminary optimization of biopolymer extraction
processes.
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