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Аннотация. Введение. Явление самовозбуждения акустических колебаний за счёт теплообмена 

известно давно, но его изучение началось недавно из-за развития высокофорсированных камер 

сгорания. Эти колебания могут дестабилизировать горение, но также могут быть полезны, 

увеличивая тепловую нагрузку и сокращая время сгорания. Исследование волновых режимов 

горения важно, как теоретически, так и практически. В большинстве случаев изучали гомогенные 

среды, но реальные системы, такие как «жидкие капли – окислитель» или «твёрдые частицы – 

окислитель», демонстрируют уникальную волновую динамику. Для понимания этих процессов и 

управления колебаниями необходимо более глубокое изучение. Цель. На основе модели 

взаимодействующих континуумов рассмотрена задача о слабонелинейных волновых возмущениях 

в ограниченном объёме химически реагирующей двухфазной смеси монодисперсных твердых 

частиц в газообразном окислителе. Исследование учитывает, что динамическое и тепловое 

взаимодействие фаз влияет на диссипацию и дисперсию фазовой скорости звука. Метод медленно 

меняющихся амплитуд позволил свести систему уравнений сохранения массы, энергии и импульса 

к нелинейному волновому уравнению. Получены уравнения для установившихся амплитуд 

колебаний. Обсуждено влияние дисперсии, вызванной различием температур и скоростей фаз, на 

нелинейное взаимодействие стоячих волн. Показано, что зависимость скорости звука от частоты 

ограничивает перекачку энергии вверх по спектру, увеличивая амплитуды первых обертонов. 

Материалы и методы. С помощью метода медленно меняющихся амплитуд система уравнений 

сохранения массы, энергии и импульса для обеих фаз сведена к единственному нелинейному 

волновому уравнению. Результаты и обсуждение. Получены уравнения для определения 

значений установившихся амплитуд колебаний. Исследовано влияние дисперсии, вызванной 

несовпадением температур и скоростей фаз газовзвеси, на нелинейное взаимодействие стоячих 

волн.  Заключение. В данной статье представлено исследование поведения акустических 

возмущений в ограниченном объёме горящей газовзвеси.  
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Целью исследования было получение единственного нелинейного волнового уравнения, 

описывающего эволюцию давления в топке. В основу анализа положено предположение о малости 

влияния нелинейности, дисперсии и неконсервативности колебаний на амплитуды волн. Это 

позволило применить метод разложения решения по собственным модам линейной 

консервативной задачи для решения полученного уравнения. Процедура разложения позволила 

свести исходное волновое уравнение к бесконечной системе обыкновенных дифференциальных 

уравнений для комплексных амплитуд. В рамках этого подхода были найдены значения 

установившихся амплитуд стоячих волн, что представляет собой важный вклад в понимание 

динамических процессов в системах горения. Таким образом, исследование демонстрирует 

высокую степень аналитической строгости и математической точности, а также глубокое 

понимание фундаментальных принципов акустики и горения. Полученные результаты могут быть 

использованы для дальнейшего развития теоретических моделей и экспериментальных 

исследований в области горения и акустических процессов. 

Ключевые слова: вибрационное горение, акустические колебания, волновые режимы, химически 

реагирующая газовзвесь 
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Abstract. Introduction. The phenomenon of self-excitation of acoustic oscillations due to heat transfer 

has been known for a long time, but its study has only recently begun due to the development of high-

pressure combustion chambers. These oscillations can destabilize combustion, but they can also be 

beneficial by increasing the heat load and reducing the combustion time. The study of wave modes in 

combustion is important both theoretically and practically. Most studies have focused on homogeneous 

media, but real systems such as "liquid droplets-oxidizer" or "solid particles-oxidizer" exhibit unique 

wave dynamics. A deeper understanding is needed to comprehend these processes and manage 

fluctuations. Goal. Based on the model of interacting continua, the problem of weakly nonlinear wave 

disturbances in a limited volume of a chemically reacting two-phase mixture of monodisperse solid 

particles in a gaseous oxidant is considered. The study takes into account that the dynamic and thermal 

interaction of the phases affects the dissipation and dispersion of the phase sound velocity. The method of 

slowly changing amplitudes allowed the system of mass, energy, and momentum conservation equations 

to be reduced to a nonlinear wave equation. Equations for the steady-state amplitudes of oscillations were 

obtained. The effect of dispersion caused by the difference in temperatures and phase velocities on the 

nonlinear interaction of standing waves is discussed. It is shown that the dependence of the speed of 

sound on frequency limits the transfer of energy up the spectrum, increasing the amplitudes of the first 

overtones. Materials and methods. Using the method of slowly varying amplitudes, the system of mass, 
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energy, and momentum conservation equations for both phases is reduced to a single nonlinear wave 

equation. Results and discussion. Equations are obtained for determining the values of the established 

amplitudes of oscillations. The influence of dispersion caused by the non-coincidence of temperatures and 

velocities of gas-suspension phases on the nonlinear interaction of standing waves is investigated. 

Conclusion. This article presents a study of the behavior of acoustic disturbances in a limited volume of 

burning gas suspension. The goal of the study was to obtain a single nonlinear wave equation that 

describes the evolution of pressure in the furnace. The analysis is based on the assumption that the effects 

of nonlinearity, dispersion, and non-conservation of oscillations on wave amplitudes are negligible. This 

assumption allows us to use the method of decomposition of the solution into eigenmodes of the linear 

conservative problem to solve the obtained equation. The decomposition procedure reduces the original 

wave equation to an infinite system of ordinary differential equations for complex amplitudes. Within this 

approach, the values of the steady-state amplitudes of the standing waves were found, which represents an 

important contribution to the understanding of the dynamic processes in combustion systems. Thus, the 

study demonstrates a high degree of analytical rigor and mathematical accuracy, as well as a deep 

understanding of the fundamental principles. 

Key words: vibration combustion, acoustic oscillations, wave modes, chemically reacting gas suspension 
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       Introduction. The effect of excitation and amplification of acoustic vibrations due to 

heat removal has been known for a long time (for example, the phenomenon of "singing flames" 

and the Rijke tube [1], in which heat is supplied to the air using a hot grid). However, interest in 

the self-excitation of sound waves by means of combustion arose relatively recently in 

connection with the creation of highly accelerated furnaces and combustion chambers of rocket 

engines, in which strong pressure fluctuations were discovered [1-5]. These vibrations can 

significantly disrupt the combustion process and lead to the destruction of the structural elements 

of the furnace or engine. On the other hand, it often turns out to be advantageous to maintain an 

oscillatory combustion mode [6-8], since this increases the thermal stress of the furnaces, 

significantly intensifies the processes of heat and mass transfer and, as a result, reduces the 

combustion time of the fuel. In addition, the transition to vibrational combustion opens up great 

prospects in metallurgy, the chemical industry, etc. [1]. Thus, the problem of wave modes of 

behavior of reacting systems is of not only theoretical but also practical interest. Basically 

problem of the theory of vibrational combustion was considered in relation to homogeneous 

media (with the exception of [9, 10]). In real systems, burning systems are mixtures of the 

"liquid droplets - oxidizer" or "solid particles - oxidizer" type, whose wave dynamics differ from 

those in homogeneous media. For example, heat and mass transfer processes lead to the 

dissipation of sound wave energy in inert systems and can amplify waves in reacting two-phase 

systems. 

In this paper, the problem of weakly nonlinear wave disturbances in a confined volume of 

a chemically reacting two-phase mixture of monodisperse solid particles in a gaseous oxidizer is 

considered using a model of interacting interpenetrating continua. The study corresponds to a 

situation where the dynamic and thermal interaction between the phases determines not only the 

dissipation of sound wave energy but also the dispersion of the phase velocity of sound. Using 

the method of slowly varying amplitudes, the system of equations for the conservation of mass, 

energy, and momentum for both phases is reduced to a single nonlinear wave equation. 

Equations are derived for determining the values of steady-state oscillation amplitudes. The 

influence of dispersion caused by the mismatch of temperatures and phase velocities of the gas 
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suspension on the nonlinear interaction of standing waves is discussed in detail. It is shown that 

the dependence of the speed of sound on frequency leads to a limitation of energy transfer up the 

spectrum and, thereby, to an increase in the amplitudes of the first overtones. 

Materials and methods of the study. We will consider the acoustic vibrations of a 

mixture consisting of solid particles reacting in a kinetic regime, suspended in a gaseous 

oxidizer. For simplicity, we will assume that the particles have identical thermophysical 

properties. Assuming that there are a sufficient number of particles at distances of the order of 

the wavelength, we will describe the oscillation processes in the system using methods of 

continuum mechanics. We will assume that the chemical reaction occurs in a purely 

heterogeneous regime without changing the molar content, for example 22 COOC  . It is 

known that the combustion reaction of carbon is significantly more complex [11]. However, 

taking into account intermediate reactions would significantly complicate the analysis and lead 

to more complex calculations, but at the same time would not significantly affect the effects 

considered here. Neglecting the dissipation of sound waves due to viscosity and thermal 

conductivity in the gas volume, we write the system of equations of motion of a two-phase 

mixture in the form: 
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Here 0T,p , is the average pressure and temperature of the mixture of the oxidizer and 

reaction product, eT is the ambient temperature,  is the effective heat transfer coefficient, 10 d,d

and v,u are the densities and average velocities of the carrier gas and particles, respectively,  is 

the volume concentration of the particles, 0n and 1n are the densities of the oxidizer and reaction 

product, 1T is the average temperature of the particles, L is the heat of reaction, g is the ratio of 

the molecular weights of the reaction product and the oxidizer, vс is the specific heat capacity of 

the gas at constant volume, 1с is the specific heat capacity of the material of the particles. 

A stationary state, in which the suspension is considered motionless  0vu  , is achieved 

when the heat release due to the chemical reaction is equal to the heat removal through the 

channel walls,  e00 TTLI  i.e. 
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When analyzing the wave motions of a two-phase reacting mixture, the system of 

equations (1) can be closed by the following expressions for the heat fluxes ,10 Q,Q , the oxidizer 

flux 0I , and the interphase interaction force f : 
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where the prime denotes the quantities disturbed by the wave, 0 is the thermal 

conductivity coefficient of the carrier gas, 01T is the stationary temperature distribution in the 

vicinity of the particle, E is the activation energy, R is the gas constant, 0Т  , 1T is the disturbance 

of the temperature in the gas and inside the particle, respectively, by the sound wave, a is the 

particle radius, 0 is the kinematic viscosity of the mixture of the oxidizer and the reaction 

product, d is the relaxation time of the phase velocities in the Stokes flow around the particle. 

Expressions (2) were obtained for a highly dilute gas suspension ( 1 ) for the case of quasi-

stationary flow around the particles. The latter is valid in a situation where the wave frequency 

satisfies the inequality 
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where d and t - relaxation times for the processes of establishing a quasi-stationary 

distribution of velocity and temperature in the vicinity of a particle, 0 - thermal diffusivity of 

the gas phase. 

We will further assume that the oxidizer density 0n does not change over a time of the 

order of the wave period, i.e. 1n  . Here
 

Dx3

x1a 2

n



 , , and is x a parameter characterizing 

the ratio of the rate of chemical reaction to the rate of oxidizer supply to the particle surface 

through diffusion. For the kinetic combustion regime 
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much less than one, where z is the pre-exponential factor, D is the diffusion coefficient. 

Research results and discussion. The behavior of acoustic vibrations in an inert or 

chemically reacting gas suspension depends on the processes of dynamic and thermal interaction 

between the phases. These phenomena cause dissipation of wave energy and dispersion of its 

phase velocity. Note that the influence of heat and momentum exchange has the strongest impact 

on the propagation of acoustic waves under the condition 1~~ td  .  
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Let us assume that the times of heating of the gas к by the heat of chemical reaction and 

mass transfer j satisfy the following inequalities  1p*   

                                          kj , 
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Characteristic times к and t are related to each other by the ratio 
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The dispersion relation corresponding to the linearized system (1), (2) has the form 
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where k is the wave number (in general, complex),  is the real frequency, 0c  – the 

"frozen" speed of sound. For the kinetic regime of a chemical reaction 
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We will restrict ourselves to a quadratic approximation, i.e., in the equations describing the 

motion of a two-phase mixture (1), we will retain only the linear and quadratic terms for the 

disturbances. Although the expressions for the interphase interaction force and heat fluxes (2) are 

obtained in a linear approximation, they can be used in the analysis of nonlinear wave processes, 

based on the following considerations. We will consider waves of finite amplitude, whose profile 

varies slightly over distances on the order of a wavelength. This variation is caused by the 

nonlinearity in the conservation and state equations and the nonconservative nature of the 

interphase interaction. If these processes are considered to have an equal effect on the wave, then 

including nonlinear terms in the above expressions would mean exceeding the accepted 

accuracy. 

Denoting the quantities in a stationary gas suspension by the accepted symbols, and their 

perturbations in a wave by the same symbols with a prime, from (1) and (2) we obtain, with an 

accuracy of up to quantities of the second order of smallness in perturbations, the following 

system of equations 
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The linearized system of equations (1) and (2) allows for unstable periodic solutions, with 

instability occurring when moving from high to low frequencies. Including quadratic terms in (5) 

leads to a transfer of energy from low-frequency oscillations upwards in the spectrum. Thus, the 

combined influence of nonlinearity and nonconservatism can lead to the existence of a stationary 

solution for system (5). 

Let us consider the behavior of longitudinal acoustic vibrations in a confined heat-

generating incandescent tube of length l. In such a system, the formation and establishment of 

finite-amplitude standing waves is possible due to reflection from the boundary and the 

superposition of perturbations traveling toward each other. However, studying the evolution of 

an arbitrary perturbation directly from system (5) is quite difficult. Therefore, it makes sense to 

reduce this system to a single evolution equation. Considering a highly dilute mixture  1 , we 

rewrite equation (5) in dimensionless form. The first three equations in (5) will be: 
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The following dimensionless variables and parameters are introduced here 
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It is easy to see that the terms in equations (6) containing the variables 
** Tиv have 

second-order smallness in perturbations. Therefore, in the remaining equations (5), it is sufficient 

to retain only the linear terms:  
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Based on the linearized system (6), we have differential relationships between pressure and 

velocity disturbances 
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as well as expressions relating perturbations of pressure, density and temperature 
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Using the integral relations following from (7) 
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and also (8) and (9 ), within the accepted accuracy, we transform system (6) to the form 

                  
       
























dpeep

u

2

1p
1

2

1

y

up *

0

p1p12
tt

*
tt

2*2***
*t*t

(10) 

   
























dueeu

y

u

2

1

y

p

2

1

y

pu *

0

2
dd

*
dd

2*2***
dd  

Differentiating the first equation (10) with respect to , and the second with respect to y, 

and subtracting the second result from the first, we obtain a single nonlinear wave equation for 

the pressure in the furnace 
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2
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3
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The left-hand side of (11) is the standard wave-level operator, the right-hand side consists 

of nonlinear square terms and terms describing energy pumping, its dissipation, and distributed 
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dispersion effects. The latter also have second-order smallness in perturbations due to the fact 

that the coefficients i << 1, i = 1, 2, 3, 4. 

For a linear conservative system, instead of (11) we have the usual wave equation 
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The solution of this equation in a limited volume can be represented as a sum of standing 
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where Фn - arbitrary amplitude, n - natural frequency of mode with number n , n - phase. 

It was shown above that the terms on the right-hand side of equation (11) are significantly 

smaller than those on the left-hand side. Therefore, we will seek a solution to equation (11) as a 

series in terms of the eigenmodes of the generating linear conservative equation, assuming that, 

as a result of nonlinear interaction, dissipation, and energy pumping, the amplitudes of the 

standing waves are slowly varying functions of time: 
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Substituting expressions (13) into equation (11), we obtain 
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We assume that the ends of the volume are close to acoustically closed, i.e. n < <1 and 

n. Then equation (14) can be reduced to an infinite system of differential equations for 

complex amplitudes 

                    ...3,2,1n;FFFF2
8

ni
F)(i

d

dF

1m

n

1m
mnm

*
mnmnnnn

n 














 


 


(15) 

Let us introduce real amplitudes and phases into consideration, i.e., let us set 
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in (15), we obtain a system of equations describing the nonlinear interaction of standing waves in 

the quadratic approximation. 
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Next, we restrict ourselves to the case of interaction of four vibration modes (n = 1, 2, 3, 

4). A necessary condition for the existence of steady-state amplitudes of sound waves different 

from zero is the presence of at least one mode that decays according to the given approximation, 

i.e., in the set n ( n = 1, 2, ,3, 4) must contain quantities of different signs. Let us consider the 

case of a shallow entry into the instability region ( 1 >0, 2 <0, 1 <<1), when the amplitude of 

only the fundamental tone increases, while the remaining overtones are damped (since in real 

processes, high harmonics are characterized, all other things being equal, by increased energy 

dissipation). The stationary solution of equation (16) is found from a system of nonlinear 

algebraic equations for pn  and n 
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Using Seidel's method, we find the steady-state oscillation amplitudes with and without 

dispersion. Thus, dispersion, caused by the mismatch between the average temperatures and 

phase velocities of the gas suspension, leads to an increase in the amplitudes of the first 

overtones and a decrease in the amplitudes of subsequent harmonics. The latter is explained by 

the fact that the presence of dispersion in the system disrupts internal resonances and, 

consequently, limits the transfer of energy up the spectrum. 
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Conclusion. In this article, we have derived a single nonlinear wave equation describing 

the evolution of pressure in a furnace to study the behavior of acoustic disturbances in a confined 

volume of a burning gas suspension. The assumption that nonlinearity, dispersion, and 

nonconservative nature of the oscillations have a small effect on wave amplitudes allowed us to 

use the eigenmode expansion method for a linear conservative problem to solve the resulting 

equation. This procedure reduced the original wave equation to an infinite chain of ordinary 

differential equations for complex amplitudes. The steady-state amplitudes of the standing waves 

were determined. 
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