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AHHoOTauus. Beedenue. SIBnenne caMoBO30YKICHUS aKyCTHYECKHX KojieOaHMIl 3a CU€T TerurooOMeHa
W3BECTHO J]ABHO, HO €r0 M3y4YeHHE Ha4aJOCh HEJAAaBHO W3-32 Pa3BUTUS BHICOKO(GOPCHPOBAHHBIX Kamep
cropanusi. JTH KoJe0aHWs MOTYT JecTaOWIM3UpOBaTh TOPEHUE, HO TaKKe MOTYT OBITh IOJIE3HHI,
YBEJIMYMBAs TEIUIOBYIO HArpy3Ky M COKpamas BpeMsi cropanus. lMccienoBaHHe BOJHOBBIX DPEXHMOB
TOPEHHs Ba)KHO, KaK TEOPETUYECKH, TaK M MPAKTUYECKH. B OONBIIMHCTBE CIydaeB M3ydalld TOMOTCHHBIE
Cpellbl, HO peallbHble CUCTEMBI, TaKUe KaK (OKUJKUE KalUld — OKUCIUTEINb» WIH «TBEPJBIC YaCTUIIBI —
OKHCIIUTENbY, IEMOHCTPUPYIOT YHHKAIBGHYIO BOJHOBYIO AMHAMUKY. [/ IOHMMaHUS 3THX HPOLECCOB U
yIpaBiIeHUs KoyieOaHHsAMH HeoOxoaumo Oosiee riryookoe wnsydenue. Ilens. Ha ocHoBe Mozenn
B3aUMOJICHCTBYIONINX KOHTHHYYMOB PacCMOTpPEHa 3a/1a4a O cIaOOHEIMHEHHBIX BOTHOBBIX BO3MYILIEHHIX
B OrpaHMYCHHOM O0BEME XMMHYECKH pearupymomei aByx($azHol CMeCH MOHOJMCIIEPCHBIX TBEPIBIX
YacTHIl B Tra3000pa3HOM OKHciuTene. lccienoBaHue YYMTHIBAET, YTO JHHAMHYECKOE M TEIIOBOE
B3anMoJieiicTBHE (a3 BIUSAET HAa AUCCHUIIAINIO M TUCTIEPCHIO (ha30BOM CKOPOCTH 3BYKa. MeToa MeIIeHHO
MEHSIFOIIIUXCST aMIUTUATY/I TO3BOJIHII CBECTH CUCTEMY YPaBHEHUI COXPAaHEHHUSI MACChl, SHEPTHH U UMITYJIbCa
K HEJIMHEIHOMY BOJHOBOMY YypaBHEHHIO. llomyueHbl ypaBHEHHS AJS YCTAaHOBUBILMXCS aMIUTUTYJ
kosiebanuii. OOCYXIeHO BIUSHHME IUCIIEPCHH, BBI3BAHHOW Pa3iIMYMeM TeMIlepaTyp M CKopocTel da3, Ha
HEeJIMHEeHOe B3aUMOJICHCTBHE CTOSYUX BOJIH. [loka3zaHO, YTO 3aBUCHMOCTh CKOPOCTH 3BYKa OT YaCTOTHI
OTrpaHUYMBAET IEPEKauKy SHEPrUU BBEPX M0 CHEKTPY, YBEIUYMBAs aMIUIMTYABI MEPBBIX OOEPTOHOB.
Mamepuanst u memoodpt. C TOMOLILIO METOAA MEIJIEHHO MEHSIOLIMXCSI aMIUTUTYl CHCTEMa ypaBHEHUH
COXpaHEeHHUs MacChl, SHEPTHUM W UMITyJIbca Jisi o0enx (a3 cBeJicHa K CIUHCTBEHHOMY HEIMHEWHOMY
BOJJHOBOMY YypaBHEHHIO. Pezynemamur u ob6cysycoenue. IlomyueHbl ypaBHEHHS U ONpEICIICHUS
3HaYCHUH YCTaHOBMBLIMXCSI aMIUIMTYyA KoseOaHui. VcciemoBaHO BIMSHHE AMCIEPCHUH, BBI3BAHHOU
HECOBIIA/ICHUEM TeMIIepaTyp W CKOpocTed (a3 ra3oB3BecH, Ha HEIMHEHHOE B3aMMOAEHCTBUE CTOSUUX
BOJH. 3akniouenue. B 1aHHOW cTaTbe MPEACTAaBICHO WCCIEIOBAHUE IIOBEACHHUSA aKyCTHYECKHX
BO3MYILEHHUH B OrpaHUYEHHOM 00BbEME TOPSIIIEH ra30B3BECH.
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Ilenpto wuccienmoBaHust OBUIO TONYyYEHHWE EIMHCTBEHHOTO HEIMHEHHOTO BOJHOBOTO YpPaBHEHUS,
OIMCBIBAIOIIETO 3BOJIIOLUIO IaBJICHU B TOIIKE. B OCHOBY aHanM3a MOJI0KEHO MPEANOIOKEHUE O MaJIOCTH
BJIMSHUS HEJTMHEHHOCTH, AWCIEPCHH W HEKOHCEPBATHBHOCTH KoJieOaHWH Ha aMIUIMTYIbl BOJH. JTO
MO3BOJIJIO TPUMEHUTh METOA PAa3JIOKEHHs PEUIeHUST 10 COOCTBEHHBIM MOJaM JIMHEHHOH
KOHCEPBATUBHON 3a/auM AJIsl PEeLICHHs IOJIYy4EHHOIro ypaBHeHMs. lIpoueaypa pasnokeHus! 1mo3BOJIHIIA
CBECTH WCXOJHOE BOJHOBOE ypaBHEHHE K OECKOHEYHOW CHCTeMe OOBIKHOBEHHBIX M (hepeHIInaTbHBIX
YpaBHEHUH [Js1 KOMIUIEKCHBIX aMIUTUTYyA. B pamkax 3Toro moxaxoma ObUIM HaWJCHBI 3HAYCHUS
YCTAHOBUBIIMXCSA aMIUIMTYZ CTOSMMX BOJH, YTO HPEACTaBIseT cOOOM Ba)KHBIA BKJIA[ B IOHHUMAaHHUE
JUHAMUYECKUX IIPOLECCOB B CHUCTEMax TropeHus. TakuMm o0pa3oMm, HCCIeIOBaHHE AEMOHCTPUPYET
BBICOKYIO CTENEHb AaHATUTHYECKOH CTPOrOCTM M MaTeMaTHYeCKOH TOYHOCTH, a Takke TIyOoKoe
NoHUMaHue (QyHIaMEHTAJIbHBIX MPUHIMIIOB aKYCTHKH U ropeHus. [lomydeHHble pe3yabTaThl MOTYT OBITH
UCIIOJIB30BaHbl Ul JAalbHEHIIEro pa3BUTUS TEOPETHYECKHX MOJENCH U 3KCIEPUMEHTAIbHBIX
UCCIIeTOBaHNH B 001aCTH TOPEHUS H aKyCTHYECKUX TPOLIECCOB.

KaoueBble cioBa: BUOpaMOHHOE TOpEHHE, aKyCTHUECKUE KOJIeOaHHs, BOTHOBbIE PEKUMBI, XUMHUECKH
pearupyromias ra3oB3Bech
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Abstract. Introduction. The phenomenon of self-excitation of acoustic oscillations due to heat transfer
has been known for a long time, but its study has only recently begun due to the development of high-
pressure combustion chambers. These oscillations can destabilize combustion, but they can also be
beneficial by increasing the heat load and reducing the combustion time. The study of wave modes in
combustion is important both theoretically and practically. Most studies have focused on homogeneous
media, but real systems such as "liquid droplets-oxidizer" or "solid particles-oxidizer" exhibit unique
wave dynamics. A deeper understanding is needed to comprehend these processes and manage
fluctuations. Goal. Based on the model of interacting continua, the problem of weakly nonlinear wave
disturbances in a limited volume of a chemically reacting two-phase mixture of monodisperse solid
particles in a gaseous oxidant is considered. The study takes into account that the dynamic and thermal
interaction of the phases affects the dissipation and dispersion of the phase sound velocity. The method of
slowly changing amplitudes allowed the system of mass, energy, and momentum conservation equations
to be reduced to a nonlinear wave equation. Equations for the steady-state amplitudes of oscillations were
obtained. The effect of dispersion caused by the difference in temperatures and phase velocities on the
nonlinear interaction of standing waves is discussed. It is shown that the dependence of the speed of
sound on frequency limits the transfer of energy up the spectrum, increasing the amplitudes of the first
overtones. Materials and methods. Using the method of slowly varying amplitudes, the system of mass,
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energy, and momentum conservation equations for both phases is reduced to a single nonlinear wave
equation. Results and discussion. Equations are obtained for determining the values of the established
amplitudes of oscillations. The influence of dispersion caused by the non-coincidence of temperatures and
velocities of gas-suspension phases on the nonlinear interaction of standing waves is investigated.
Conclusion. This article presents a study of the behavior of acoustic disturbances in a limited volume of
burning gas suspension. The goal of the study was to obtain a single nonlinear wave equation that
describes the evolution of pressure in the furnace. The analysis is based on the assumption that the effects
of nonlinearity, dispersion, and non-conservation of oscillations on wave amplitudes are negligible. This
assumption allows us to use the method of decomposition of the solution into eigenmodes of the linear
conservative problem to solve the obtained equation. The decomposition procedure reduces the original
wave equation to an infinite system of ordinary differential equations for complex amplitudes. Within this
approach, the values of the steady-state amplitudes of the standing waves were found, which represents an
important contribution to the understanding of the dynamic processes in combustion systems. Thus, the
study demonstrates a high degree of analytical rigor and mathematical accuracy, as well as a deep
understanding of the fundamental principles.
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Introduction. The effect of excitation and amplification of acoustic vibrations due to
heat removal has been known for a long time (for example, the phenomenon of "singing flames"
and the Rijke tube [1], in which heat is supplied to the air using a hot grid). However, interest in
the self-excitation of sound waves by means of combustion arose relatively recently in
connection with the creation of highly accelerated furnaces and combustion chambers of rocket
engines, in which strong pressure fluctuations were discovered [1-5]. These vibrations can
significantly disrupt the combustion process and lead to the destruction of the structural elements
of the furnace or engine. On the other hand, it often turns out to be advantageous to maintain an
oscillatory combustion mode [6-8], since this increases the thermal stress of the furnaces,
significantly intensifies the processes of heat and mass transfer and, as a result, reduces the
combustion time of the fuel. In addition, the transition to vibrational combustion opens up great
prospects in metallurgy, the chemical industry, etc. [1]. Thus, the problem of wave modes of
behavior of reacting systems is of not only theoretical but also practical interest. Basically
problem of the theory of vibrational combustion was considered in relation to homogeneous
media (with the exception of [9, 10]). In real systems, burning systems are mixtures of the
"liquid droplets - oxidizer" or "solid particles - oxidizer" type, whose wave dynamics differ from
those in homogeneous media. For example, heat and mass transfer processes lead to the
dissipation of sound wave energy in inert systems and can amplify waves in reacting two-phase
systems.

In this paper, the problem of weakly nonlinear wave disturbances in a confined volume of
a chemically reacting two-phase mixture of monodisperse solid particles in a gaseous oxidizer is
considered using a model of interacting interpenetrating continua. The study corresponds to a
situation where the dynamic and thermal interaction between the phases determines not only the
dissipation of sound wave energy but also the dispersion of the phase velocity of sound. Using
the method of slowly varying amplitudes, the system of equations for the conservation of mass,
energy, and momentum for both phases is reduced to a single nonlinear wave equation.
Equations are derived for determining the values of steady-state oscillation amplitudes. The
influence of dispersion caused by the mismatch of temperatures and phase velocities of the gas
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suspension on the nonlinear interaction of standing waves is discussed in detail. It is shown that
the dependence of the speed of sound on frequency leads to a limitation of energy transfer up the
spectrum and, thereby, to an increase in the amplitudes of the first overtones.

Materials and methods of the study. We will consider the acoustic vibrations of a
mixture consisting of solid particles reacting in a kinetic regime, suspended in a gaseous
oxidizer. For simplicity, we will assume that the particles have identical thermophysical
properties. Assuming that there are a sufficient number of particles at distances of the order of
the wavelength, we will describe the oscillation processes in the system using methods of
continuum mechanics. We will assume that the chemical reaction occurs in a purely
heterogeneous regime without changing the molar content, for example C+0O, — CO,. It is
known that the combustion reaction of carbon is significantly more complex [11]. However,
taking into account intermediate reactions would significantly complicate the analysis and lead
to more complex calculations, but at the same time would not significantly affect the effects
considered here. Neglecting the dissipation of sound waves due to viscosity and thermal
conductivity in the gas volume, we write the system of equations of motion of a two-phase
mixture in the form:

a(*‘“io)Jr 6(8d0u) I: a(Pd1)+a(Pd1V) I

9

b

ot ox ot ox
Olen Olen
(at0)+ (aXOU):_IO;p:1_8’d0:n0+n1;
Sdo(g"‘uiJu:—@—fW-I(u—v);
ot ox ox

pdl(§+ Vijv =f; p= R0n0T+R1n1T0; (1)
ot ox

0 0 0
8d0°v(—+u—Jlo +p—(eu+pv)=

:QO _a(TO _Te)

4 I(l—d—OJ+f(u—v)—I(V_u)2 ;

dy

o 0
I=—(g-1),; pdlcl[a—i—V&JTl = —Q,; Q,-Q, =LI,.

Here p,T,, is the average pressure and temperature of the mixture of the oxidizer and
reaction product, T,is the ambient temperature, o is the effective heat transfer coefficient, d,,d,;
and u,v are the densities and average velocities of the carrier gas and particles, respectively, pis
the volume concentration of the particles, n,and n;are the densities of the oxidizer and reaction
product, T,is the average temperature of the particles, L is the heat of reaction, gis the ratio of
the molecular weights of the reaction product and the oxidizer, c, is the specific heat capacity of
the gas at constant volume, c;is the specific heat capacity of the material of the particles.

A stationary state, in which the suspension is considered motionless (u = v =0), is achieved
when the heat release due to the chemical reaction is equal to the heat removal through the
channel walls, LI, = cx(TO —Te)i.e.

13



Modern Science and Innovations. 2025. No. 4

When analyzing the wave motions of a two-phase reacting mixture, the system of
equations (1) can be closed by the following expressions for the heat fluxes Q,,Q; , the oxidizer

flux I, and the interphase interaction force f :

2a%d
poPd gy g =22
Td 9V0d0

, , , dTy/ T, — l—p* ’
a dt Ty
' 3p7\‘0p* ’ E a2d1C1
ly=— (5 pr=——(To1 ~To); Te=—1—,
a“L RTOI 3}\,0

where the prime denotes the quantities disturbed by the wave, A,is the thermal
conductivity coefficient of the carrier gas, T, is the stationary temperature distribution in the

vicinity of the particle, Eis the activation energy, R is the gas constant, T, T/ is the disturbance
of the temperature in the gas and inside the particle, respectively, by the sound wave, ais the
particle radius, v,is the kinematic viscosity of the mixture of the oxidizer and the reaction
product, 7,is the relaxation time of the phase velocities in the Stokes flow around the particle.

Expressions (2) were obtained for a highly dilute gas suspension ( p <<1) for the case of quasi-
stationary flow around the particles. The latter is valid in a situation where the wave frequency
satisfies the inequality

2 2
’ ! ! a !
T~ T0<<1, 1y =—, Ty, =—,
Vo Xo
where tjand t}- relaxation times for the processes of establishing a quasi-stationary
distribution of velocity and temperature in the vicinity of a particle, - thermal diffusivity of
the gas phase.

We will further assume that the oxidizer density n, does not change over a time of the
a’ (l +X)
3pDx
the ratio of the rate of chemical reaction to the rate of oxidizer supply to the particle surface

through diffusion. For the kinetic combustion regime

az exp[— EJ
RT,

D

order of the wave period, 1.e. T,0>>1. Heret, = , , and is x a parameter characterizing

X =

much less than one, where zis the pre-exponential factor, D is the diffusion coefficient.

Research results and discussion. The behavior of acoustic vibrations in an inert or
chemically reacting gas suspension depends on the processes of dynamic and thermal interaction
between the phases. These phenomena cause dissipation of wave energy and dispersion of its
phase velocity. Note that the influence of heat and momentum exchange has the strongest impact
on the propagation of acoustic waves under the conditiontyo ~ 1,0 ~1.
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Let us assume that the times of heating of the gas t_by the heat of chemical reaction and
mass transfer 7;satisfy the following inequalities (p* << 1)

Tj(D > TkOJ —> 0 ,
where

=a2d0cv(l—p*) .= azldo(l—p*)
3phope 1 3pho(g—1)Tops

T

Characteristic times T, and t,are related to each other by the ratio

-1 dc
T :p*(l—p*) Atrk’ At =p Ll .
0Cv

The dispersion relation corresponding to the linearized system (1), (2) has the form
(keo )* =0y(1+ Ay —itgo)l-itg0) B(o), (3)

c d
g =1RTy, y=-2, A4 =pd—1,
cv 0

where kis the wave number (in general, complex), wis the real frequency,c, — the
"frozen" speed of sound. For the kinetic regime of a chemical reaction

_ -1
1 }{er A —1yT, @ +- 1 } (4)
<@ 1—-px« T,

We will restrict ourselves to a quadratic approximation, i.e., in the equations describing the
motion of a two-phase mixture (1), we will retain only the linear and quadratic terms for the
disturbances. Although the expressions for the interphase interaction force and heat fluxes (2) are
obtained in a linear approximation, they can be used in the analysis of nonlinear wave processes,
based on the following considerations. We will consider waves of finite amplitude, whose profile
varies slightly over distances on the order of a wavelength. This variation is caused by the
nonlinearity in the conservation and state equations and the nonconservative nature of the
interphase interaction. If these processes are considered to have an equal effect on the wave, then
including nonlinear terms in the above expressions would mean exceeding the accepted
accuracy.

B:{1+(At —it )l —p« ) +-
1T

Denoting the quantities in a stationary gas suspension by the accepted symbols, and their
perturbations in a wave by the same symbols with a prime, from (1) and (2) we obtain, with an
accuracy of up to quantities of the second order of smallness in perturbations, the following
system of equations

0

—(Tod{) +d,T) +d0T(§);
Ox

=-R
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ot/ , 0T} ady, ad,
(do+do)at0 dou g—(y—l){(ToJrTé)at To/ =(5)

The linearized system of equations (1) and (2) allows for unstable periodic solutions, with
instability occurring when moving from high to low frequencies. Including quadratic terms in (5)
leads to a transfer of energy from low-frequency oscillations upwards in the spectrum. Thus, the
combined influence of nonlinearity and nonconservatism can lead to the existence of a stationary
solution for system (5).

Let us consider the behavior of longitudinal acoustic vibrations in a confined heat-
generating incandescent tube of length /. In such a system, the formation and establishment of
finite-amplitude standing waves is possible due to reflection from the boundary and the
superposition of perturbations traveling toward each other. However, studying the evolution of
an arbitrary perturbation directly from system (5) is quite difficult. Therefore, it makes sense to
reduce this system to a single evolution equation. Considering a highly dilute mixture (p << 1), we

rewrite equation (5) in dimensionless form. The first three equations in (5) will be:

o ot oldt)

b

ot oy dy
du +d*8u +u*6u +Adi:—ap;;(6)
ot ot oy ot oy
o A s N od” cod” »od” .
d —(y=1)—=(y=-1T =——=(y -1 ——A T -T
L A (-1 - = A 1 -7)

The following dimensionless variables and parameters are introduced here

. :l', o= (1+At)(1+Ad)p_’,T:c_*t’
Cx Y+ A, p l
& ! & ! & T,
y:i,d :d 5T _19T1 :_13
4 0 Ty Ty
Va'< :L,, Ad pdl At dlCl 5 Y:C_l
C dg dgc, c,

It is easy to see that the terms in equations (6) containing the variables v’ u T have
second-order smallness in perturbations. Therefore, in the remaining equations (5), it is sufficient

to retain only the linear terms:
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*

Smol’ V) s o=
6;; _Gt(T -T (1 ))9 Gt:Cf’Ct.

Based on the linearized system (6), we have differential relationships between pressure and
velocity disturbances

TN M. N
ot oy =~ ot oy
as well as expressions relating perturbations of pressure, density and temperature
* * 1 *
d=p=—-T .09
vy—1

Using the integral relations following from (7)

b

T
* _, *
v =ocge " [e®u dr
0

Tl* = Gtefcl(lfp*)tfect(l*p*)TT*dt
0

and also (8) and (9 ), within the accepted accuracy, we transform system (6) to the form

* T "
( )2 -Aop +Atcfe’c‘t(lfp*)fIeﬁt(lfp*)rp dr
2 ot .

G PR )
ot 6y ot
(10)

6; 8; ! 6(p )Z ;a(ay) —Agoqu’ +Adcﬁe_6driecdru*dt

Differentiating the first equation (10) with respect to t, and the second with respect to vy,
and subtracting the second result from the first, we obtain a single nonlinear wave equation for
the pressure in the furnace

2 2 * o P A2 %2 A2 xR 42 %02
o°p _@p :l (Y—l)a (p) +6 (u) +a (u ) _8 () +(11)
ot eyt 2 o’ o’ oy*? oy
% * T T *
+oyp -0, ap;_a3efct(17p*)rject(lfp*)rp*dt+a4efcdrj-ecdr @;dt ’
ot 0 0 T
Where o8] ZAthZ , Oy ZAth +Ad6d ,
3 2
o3 =Aci(d-px) , o4 =A40q.

The left-hand side of (11) is the standard wave-level operator, the right-hand side consists
of nonlinear square terms and terms describing energy pumping, its dissipation, and distributed
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dispersion effects. The latter also have second-order smallness in perturbations due to the fact
that the coefficients ;<< 1,1=1, 2, 3, 4.

For a linear conservative system, instead of (11) we have the usual wave equation

* *

o’p  &?
L -E=0a2)
ot oy

The solution of this equation in a limited volume can be represented as a sum of standing
waves

where @, - arbitrary amplitude, o, - natural frequency of mode with number n , ¢, - phase.

It was shown above that the terms on the right-hand side of equation (11) are significantly
smaller than those on the left-hand side. Therefore, we will seek a solution to equation (11) as a
series in terms of the eigenmodes of the generating linear conservative equation, assuming that,
as a result of nonlinear interaction, dissipation, and energy pumping, the amplitudes of the
standing waves are slowly varying functions of time:

p:

n

M8

@, (ur)e ™" cos(iy,y + oy ). w<<l, (13)

g

u’ =i Ysign(n)®, (ur)e " sin(K‘n‘y + Q) -

n=-o0

Substituting expressions (13) into equation (11), we obtain

© F .
Zmn(dd_n_(Yn —1(8, +8n))Fn]e_lwnt cosy, =(14)
n=l1 T

1, o2 .
=—grZ X + @y )2 FyFpe Ot On)® cos(y +Xn)]+

n=Im=1
2 * —i(on—0,)T
+((Dm _(Dn) Fane COS(Xm _Xn)
Here

Op =Ky =T +€, Yy =YY, ,

\Pl’l :Sl'ly+(p1’1 > Fl’l :q)ne_ian": >

— Ade - Ath),

Tn

1 AcGi(-p:)  Agog
2

2 6i(1-ps)’ +o; of+or

1| Aoi(l-p:)’ Aol Agoio,

5 =—
b2 oon(ctz(l—p*)2+oaﬁ) (O G§+mﬁ
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We assume that the ends of the volume are close to acoustically closed, i.e. | On |<<1and
|sn ‘ <<1. Then equation (14) can be reduced to an infinite system of differential equations for
complex amplitudes

dF,
dt

. 1ymn © * n
—(y, —i(8, +&,))F, == {2 Y F, . Fo+ ZFan_m} S n=123...
8 m=1 m=1

(15)
Let us introduce real amplitudes and phases into consideration, i.e., let us set
F, = p,e™(n=1.2,..), where p , - amplitude, 0, - phase. Separating the real and imaginary parts

in (15), we obtain a system of equations describing the nonlinear interaction of standing waves in
the quadratic approximation.

dp, |, 2 . n .
(Ii)‘t =YnPn + %{2 an+mpm Sln(em+n - em - en)_ zpmpn—m Sm(en - em - en—m)} (16)
m=l m=1
de,, ymn |, & n
Pn d = _(6n +&, )pn - ? 2 Z Pn+mPm COs(em+n - em - en)_ zpmpn—m COS(en - em - en—m)
T m=1 m=1

n=12,...

Next, we restrict ourselves to the case of interaction of four vibration modes (n =1, 2, 3,
4). A necessary condition for the existence of steady-state amplitudes of sound waves different
from zero is the presence of at least one mode that decays according to the given approximation,
1.e., in the set y, (n =1, 2, ,3, 4) must contain quantities of different signs. Let us consider the
case of a shallow entry into the instability region ( y; >0, y2 <0, |y; [<<1), when the amplitude of
only the fundamental tone increases, while the remaining overtones are damped (since in real
processes, high harmonics are characterized, all other things being equal, by increased energy
dissipation). The stationary solution of equation (16) is found from a system of nonlinear
algebraic equations for p, and A,

ymn | 40 . n .
YnPn t+ 8 {2 z]pn+mpm SmAmn - Z PmPn-m smA(n—m)m}:0
m=

m=1

e 8k —21=0, g4—2g,=0, k=123,

Here

4-n + n
g, ==, +e,)—nioy P T m gipp oy PoPaom i g b0
8 m=1 Pa m=] Pn

AK :9k+1 —Gk —91(k=1,2,3) N A4 264 —262.

Using Seidel's method, we find the steady-state oscillation amplitudes with and without
dispersion. Thus, dispersion, caused by the mismatch between the average temperatures and
phase velocities of the gas suspension, leads to an increase in the amplitudes of the first
overtones and a decrease in the amplitudes of subsequent harmonics. The latter is explained by
the fact that the presence of dispersion in the system disrupts internal resonances and,
consequently, limits the transfer of energy up the spectrum.
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Conclusion. In this article, we have derived a single nonlinear wave equation describing

the evolution of pressure in a furnace to study the behavior of acoustic disturbances in a confined
volume of a burning gas suspension. The assumption that nonlinearity, dispersion, and
nonconservative nature of the oscillations have a small effect on wave amplitudes allowed us to
use the eigenmode expansion method for a linear conservative problem to solve the resulting
equation. This procedure reduced the original wave equation to an infinite chain of ordinary
differential equations for complex amplitudes. The steady-state amplitudes of the standing waves
were determined.
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