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Annomauus. Beedenue. B Oannoii pabome paccmompenvl pasHoecHbvle COCMOSHUSL NAA3MblL 6
NOMEHYUATLHOM GHEUHEM MACHUMHOM HOJe C IKEUNOMEHYUANbHBIMU MACHUMHBIMU HOBEPXHOCHIAMU.
Ilpusedena meopus, onucvléaemcs ypagHeHue 015 0OHONAPAMEMPUYECKO20 CeMelcmea MASHUMHbIX
nogepxnocmeii. llpueedeno obwee peuienue Onia CUCHEMbl YPASHEHUN MASHUMHOU SUOPOOUHAMUKU U
VpagHeHus, ORnucvlearowee cemeucmeo OoOHonapamempuyeckux ypaenenutl. Ilosedenue nnazmul 60
MHO20M Onpedensiemcs NPOCMPAHCMEEHHOU CMPYKMYPOU, 0SPAHUYUBarouell MazHumH1oe nojie, mo ecmo
KPUBOJIMHEHHBIMU KoopauHatamu Ez. B pesynvmame Ookazamenbcmea 1eMmbl NOJYYEHbl GbIPAICEHUS
015 0asneHus, NIOMHOCMU, NOMeHYuana masHumuozo noif. Ilpu npouseonvheix gyukyusax (b) 6 Ej,
Hokazana meopema, umo 6 cucmeme koopournam (x'), ne codepacum npouzeoonyto no nepemennou x',
oma nepemeHHas 6xooum Kak napamemp 6 ypasHenus. Mamepuanvl u memoowl. Ananumuuecku
nonyuensl obwue peutenus 0isl pAGHOBECHbIX COCMOAHULL NIA3MbL 80 6HeUlHeM NOMEHYUATbHOM Noje 8
KPUBONIUHEUHbIX Koopounamax. Pesynomamuvt u o0b6cysycoenue. B Oannoll cmamve paccmompeHvl
B03MOICHOCMU U3 NOJYYEHHOU Mmeopul 05l NOCMPOEHUs peuenull YpagHeHull, no360aaouue eblopams 6
Kauecmee He3a8UCUMBIX NepeMeHHbIX npousgonvhvle Qyukyuu. C ROMOWbIO MamemMamuiecko2o nakema
Maple npuseoenvl npumepvr epaghuueckoeo npedcmasienus pewteHutl O0asi OABAEHUs, HIOMHOCU,
CUN0Bble TUHUU MASHUTNHO20 NOJA, K8A0pama HANPANCEHHOCHU MACHUMHO20 NOAs OJil PABHOBECHLIX
COCMOAHUY  NAA3Mbl @ NOMEHYUAbHOM GHEWHEeM MAZHUMHOM NONe C  9KEUNOMEHYUATbHbIMU
MACHUMHBIMU NOGEPXHOCMAMU. 3aKaloueHnue. Pezynsmamul uccne0osanusi MOJiCHO UCNONB308AMb NPU
U3YYEHUU PABHOBECHBIX COCHOSHUU NAA3MbL 8 NOMEHYUATIbHOM GHEWHEM MASHUTNHOM NOJe.
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Abstract. Introduction. In this paper, the equilibrium states of plasma in a potential external
magnetic field with equipotential magnetic surfaces are considered. A theory is given and an equation for
a one-parameter family of magnetic surfaces is described. A general solution for the system of equations
of magnetic hydrodynamics and an equation describing a family of one-parameter equations are given.
The behavior of the plasma is largely determined by the spatial structure that limits the magnetic field,
that is, the curved coordinates E;. As a result of the proof of the lemma, expressions for pressure, density,
and magnetic field potential are obtained. For arbitrary functions (b) in E;. The theorem is proved that in
the coordinate system (x'), it does not contain a derivative of the variable x', this variable is included as a
parameter in the equations. Materials and methods. General solutions for the equilibrium states of
plasma in an external potential field in curvilinear coordinates have been obtained analytically. Results
and discussion. In this paper we consider the possibilities from the obtained theory for constructing
solutions to the equations which allow us to choose arbitrary functions in qualitatively independent
variables. Using the mathematical package Maple, examples of graphical representation of solutions for
pressure, density, magnetic field force lines and magnetic field strength square for equilibrium states of
plasma in an external potential magnetic field with equipotential magnetic surfaces are
given.Conclusion. The results of the study can be used to study the equilibrium states of plasma in a
potential external magnetic field.

Key words: one-parameter family of magnetic surfaces, components of the Levi-Civita tensor,
Eulerian magnetic field potential, density, pressure, magnetic field strength, reduction of equilibrium
conditions, plasma equilibrium states, equipotential magnetic surfaces.
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Introduction. In the introduction we will consider the theory of the issue, most of which is
presented in the works [3, 5, 6, 7, 8, 12] and is not presented in this paper. In the works [1, 2, 4,
9, 10, 11] the issues of plasma physics related to the problem under consideration in this article
are considered.

Let b ( x ) = c be a one-parameter family of magnetic surfaces, thus we have

(H(x),Vb(x)) = 0, Vb(x) # 0(1)

Together with (1) it is necessary to integrate the system

divH =0(2 a)
[rotH,H] = Vp + pVu;(2b)

Here p is the plasma pressure, u is the potential of the external field, V4w Hand is the
magnetic field strength. Now we have

H(x) = [Va(x),Vb(x)]; [Va,Vb] # 0;
3)
This is the general solution of equations (1) and (2a,2b).
Let us consider equation (2 b ) using the following equality
[rotH,H] = (Vb,rot[Va,Vb])Va — (Va,rot[Va,Vb])Vb.
Equation (2 b ) can be written as
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dp = (Vb,rot[Va,Vb])da — (Va,rot[Va,Vb])db — pdu
(.4)
Let's consider the available options.
A.Now , (Vu,[Va, Vb]) # 0;as independent variables, Eswe can select the quantities (a, b

From (4) it follows
p=pawv), p=-pu(Sa)
Pa = (Vv,rot[Va,Vv]); p, = (Va,rot[Va, Vv]).(5b)
The following lemma is used further.

Lemma. Let x'there be curvilinear coordinates Esnow

a 1 ;
S = Eg{jk(x’)([Vx'J, Vx'K],V),here &;jrare the components of

the tensor Levi-Civita in the coordinate system (x").
Proof. Let be xthe Cartesian coordinates in E3,multiplying the equality

a _ax's 2

ax1 ~ 9x9 ax's

to the expression
ox'" 0x'P

ox™ dx™
and taking into account the tensor nature of the symbol ¢ :
dx'19x"° ax'"
gnmp =P (x")
dx™ dx9 dx™ '

nmq

we get

d
([vx'®,vx'"],V) = &P (x )ax’s

Multiplying this equality by &';,,-(x")and taking into account that
glipr(xl)glprs(x,) = 25?:

we get what we need.
Note: Let's write down, as an example,d/dx'":

0
5ot = Vo' GO([vx",x]0),
Vo' &) = (x, [V, va?])

Using this lemma and remark, it is easy to write down the identities

0 _
i —(Vv,[Va, Vu]) "1 (Vv, [Vu, V]),

aa_v = (Vv, [Va, Vu]) "1 (Va, [Vu, V]).
Now the compatibility condition of the system (5 b ) can be written as
(Va, [Vu, V])(Vb, rot[Va,Vb]) = (Vb, [Vu, V])(Va, rot[Va, Vb]);(6)
From this equation we find ( a ) , specifying arbitrarily the function 5 . Now for the
pressure p we have
p = [(Vv,rot[Va,Vb])da — (Va, rot[Va, Vb])db(7)
Thus, formulas (3), (5 a ), (6), (7) provide a solution to the problem, while ( b ) is an
arbitrarily given function B Ej3.
B . (Va, [Vb,Vu]) = 0;without losing the generality of the arguments, we set b = u . Now
from equation (4) we have

p =p(a,u),
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p =—py — (Va,rot[Va, Vu]),
(8a)
pa(a,u) = (Vu,rot[Va, Vu])(8b)

From equations (8) with an arbitrarily given function p (‘a, u ) we find the potential ('a ),

we will do A few comments. Let's move from Cartesian coordinates ( x)to coordinates ( x'):
xll — Xl, xrz — xZ’ x13 — x3 (9)

Function g’ = det(g}, (v)). We also note that the scalar potential of the external field in
coordinates (x)is given by the function u(x),and in coordinates (x")by virtue of (9) by the
function u’(x") = x'3,thus, u' ,=3 3,. Next, the structure of equation (8 b ) in coordinates is
obtained (x").

Main part. Here, as before, we use the following notation: a E; — Ris the Euler potential
of the magnetic field; u is E; — Rthe potential of the external field; p is E;3 — Rthe pressure in
the plasma.

Let us consider the following equations (8).
H = [V(a),V(u)];
(10)
p= —py(au)+ (V(a),rot[V(u),V(a)]); (11)
pq (@u) = —(V(u),rot[V(u),V(a)]).(12)
Equation (12) can be written as
pala,u) = div([V(u),[V(w),V(a)]). (13)
Next we deal with a potential of the form u(x,y,z) = z.Now equation (13) takes the form
p,a(a; u) = — a,xx(x' V,Z) — a,yy(l4)

Below we present a particular solution to the equation with a specific type of pressure.
p. 1. Let

p(a,z) = —exp (a) + P(2);
Here P(z) is an arbitrary function; now we can find the general solution of equation (14).
Note that the variable z is a parameter. We introduce new variables s, t: x = s x cos(q), y =1 *
sin(g). In the new variables, equation (14) has the forma, (s,t,z) = exp(a).

The general solution to this equation is:
a=1In(2x*A(s)*B(t)) (A (s)+B()2);

here A, B are arbitrary functions of their variables and the parameter z. Since the potential ais a
real function, we should set the function B(t) = conjugate A(s). Now the potential has the form
a=1In(2*|A"(x)|?) * (2*Re A)™2 (15)
Next, we will consider several implementations of the functionA(s).
n .1.1. Let the function have the form
A(s,z) = exp(i* h(z) * s™) +v(z)*2@%™; hv-
arbitrary real functions. The potential has the form
a=1Imn2*n%*«r>"2x (r" x cos (n* q + h) + v)~2); here
and below 7, g— polar coordinates:
x =r=cos(q), y=r=sin(q).
Let us give some specific examples:
Example 1 for a := (r,q,2z) - In(2) — In(r? * cos(q + 2)*);al = a,; a2:= ay),
Let us plot graphs for the following values of a: = c: ¢=-0.67, -0.3, 0.1.
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Let us construct graphs for the square of the stress h = H 2= ¢ , with the following values ¢
=1.1, 1.6, 3.

Let us construct graphs of magnetic field lines { a :=c (¢ =-0.67, -0.3, 0.1); z=u (u =0, Pi
/4, Pi/2)}:

Example 2 .
a=(r,q2z)->InB) —In(r?+cos(2xq +2)?); al :=diff(a(r,q,z),7); a2 :=

diff (a(r,q,2),9).);
Graphs for the square of the stress H ’=¢ ,c=15,2,3.5.
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_
]

Example a:=(r,q,2) - In(8-r2) —In@?*cos(2*q+2z)+1In(2)**? ;al:=

diff(a(r,q,z).x); a2 :=diff(a(r,q,z).q).
Graphs for the square of the magnetic field strength H*=c,c=1, 2, 5.

Let's consider a function in the formA := exp(2 * s) + v(z).

The potential is of the form a: = In(2) — In ((cos(y) + v(z) * exp(—x))*.
Specific examples of this situation:

Example 4.2a = (x,y,z) - In(2) — In (cos(y) + exp(—x — z))

al =diff(a(x,y,2z),x);a2 =diff(a(x,y,2),y).

Let us construct graphs of the field strength H >=c¢, ¢ =0.5, 2, 5. .
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Graphs of magnetic field lines {a:=c(c=-1,0,1); z=u(u=-1,0, 1)}.
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Example 5.
a:=(x.y.z) - In(2) — In(cos(y) + sin(z) * exp(—x))*

al :==diff(a(x,y,2),x);a2 = dif f(x,v,2),y)
Graphs forH “=c¢,c=0.5, 2, 5.

Graphs of magnetic field lines {a=c (c=-1,0, 1); z=u (u=-9* Pi/10, - P1 /2.0, Pi/2, 9*

Pi/10)}.
~ I—
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v(2).

Let's consider a function in the formA = exp(2 * g(z) * cos(h(z) +1rx sin(h))) +

Let's give examples of this situation:

Example 6.
exp(2xz*x)

a= (x.y.z)—>ln(2*zz* >|<c0s(z>ky)+z)2 al:

exp(z*x)

diff(a(x,y,z),a);a2 = dif f(a(x,y,z),x); a2 :=diff(a(x,y,z).y).
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Graphs for the square of the field strength H ’=¢,c=05,3,7.
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Example 7. a = (r,q,z) — In(2 xexp(2 »r * cos(q + z))/(exp(r * cos(q + 2))
cosrrsing+z+1'); al=diff(argzaz=dyffarqzq.

Let's plot the graphs a:=c: ¢c=-3, -1.5, 0. .

Let us construct graphs of magnetic field lines { a:=c (¢ =-3,0,3); z=u (u=0, Pi/2, 2*
Pi)}.
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%\7) NS

—

p.2. Letp(a,z) = a + P(2),
where is P(z) — an arbitrary function; one can find the general solution of equation (15):

2
a:= % + 2 * Re (A(s));Here is A(s) —man arbitrary function.
Let's give specific examples of this situation.

2
Example 8. Let's considera = (r,q,z) — % + r? xexp(—z) xcos(2*q + z);

al :==diff(a(r,q,z),r); a2:= diff(a(r,q,z),q).
Let's plot graphs for a=c: ¢=0.01, 0.1,0.4, 1 .

Let us construct graphs of the square of the magnetic field strength H*=c¢,c=0.3, 1, 7.

Let us plot the graphs of magnetic field lines { a:=c (¢ =-3,0,3); z=u (u=0,- Pi/2,- P1)}
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Example 9.a = (x,y,2z) - % + exp(x — z) * cos(y + z);

al =diff(a(x,y,z),x); a2:=diff(a(x,y,z),y).
Let us plot graphs for the corresponding values of a=c: ¢=-0.01, 0.015, 0.1, 0.3.

Let us construct graphs of the square of the magnetic field strength H*=c , ¢ = 5.5, 6.5,
12..

—

-3-2-10 1 2 3

In point 3 we will consider the situation forp(a,z) = aZ_Z + P(z);
Where P(z) —arbitrary function; the equation takes the form:
Axx +ay, = —a.
Let us give some specific examples of this situation.
Example 10.
a = (x,y,z) - exp(—2z) * cos(x * cos(z)) * sin(y * sin(2)); a2 == dif f(a(x,y, z), x);
a2 :=diff(a(x,y,2),y).

Let's plot graphs for a=c: ¢=0.01, 0.1, 0.4, 1.
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Graphs for the square of the stress H ’=¢ ,c=3,5,7.

Let us construct graphs of magnetic field lines { a=c:¢c=-1/2,0, %4; z=u:u=-Pi/2,- Pi
/3,1).

4] &
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> | &
-6-4 | 2 6 —54 ] 2 _4@
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Example 11. Let us choose the potential in the following form
a:= (x.y.z) — cos (z) * cos (x xcosh ( z)) * sinh (y * sinh (z)) with parameters
a=c: ¢=0.01, 0.1, 0.5, 1; and plot the graphs.

Let us construct graphs for the square of the magnetic field strength H ?=¢, withc=0.15,
1, 140. .
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Let us construct graphs of magnetic field lines { a=c:¢c=-1/2,0, 1/4;z=u: u=0.2, 0.6,

2)}.
4 4 1
VIV L |
AANSA_BA A
4+ 1 1234 = 16 EANEE
ArNe |

Conclusion. The conditions of plasma equilibrium in an external potential field are reduced to a
single differential equation for the Euler potentials of the magnetic field strength; equilibrium
states are constructed in which the equipotential surfaces of the external field are magnetic
surfaces.
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