Современная наука и инновации. 2023. № 3 (43). С. 36-47 Modern Science and Innovations. 2023; 3(43):36-47

TEXHUYECKUE HAYKU / TECHNICAL SCIENCES

ИНФОРМАТИКА, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И УПРАВЛЕНИЕ / INFORMATICS, COMPUTER ENGINEERING AND MANAGEMENT

Научная статья / Original article

УДК 681.51: 621.18-5 https://doi.org/10.37493/2307-910X.2023.3.4 Дмитрий Александрович Ковалёв
[Dmitry A. Kovalev]¹,

Владимир Анатольевич Шаряков
[Vladimir A. Sharyakov]¹,

Ольга Леонидовна Шарякова
[Olga L. Sharyakova]²,

Валерия Александровна Лебедева
[Valeria A. Lebedeva]³

Аналитическая настройка регуляторов в каскадной системе автоматического регулирования разряжением

Analytical tuning of regulators in a cascade automatic discharge control system

¹ Санкт-Петербургский государственный университет промышленных технологий и дизайна, Высшая школа технологии и энергетики, г. Санкт-Петербург, Россия / St. Petersburg State University of Technologies and Design, Higher School of Technology and Energy, Saint Petersburg, Russia

² Санкт-Петербургский государственный архитектурно-строительный университет, г. Санкт-Петербург, Россия / St. Petersburg State University of Architecture and Civil Engineering, Saint Petersburg, Russia

³ Общество с ограниченной ответственностью «Научно-производственное предприятие «ЭПРО», г. Санкт-Петербург, Россия / "Research and Production Enterprise "EPRO" Limited Liability Company, Saint Petersburg, Russia

Автор, ответственный за переписку: Дмитрий Александрович Ковалёв, d.a.kovalyov@yandex.ru / Corresponding author: Dmitry A. Kovalev, d.a.kovalyov@yandex.ru

Аннотация. При синтезе систем автоматического регулирования возникает проблема со сложным определением параметров регулятора, причем основным критерием становится достижение устойчивой работы, а качество переходного процесса отходит на второй план. Такие проблемы могут возникнуть при наличии в исходной системе двух и более вложенных контуров. Корректный синтез подобных систем возможен при использовании структуры подчиненного регулирования, позволяющей заменить внутренний контур эквивалентным апериодическим звеном первого порядка. В работе на примере системы автоматического регулирования температуры перегретого пара показан принцип построения структуры подчиненного регулирования и синтез такой системы.

Ключевые слова: имитационное моделирование, объект управления, источник тепловой энергии, повышение эффективности эксплуатации, система автоматического управления разряжением, каскадная схема регулирования

Для цитирования: Ковалёв Д. А., Шаряков В. А., Шарякова О. Л., Лебедева В. А. Аналитическая настройка регуляторов в каскадной системе автоматического регулирования разряжением // Современная наука и инновации. 2023. № 3 (43). С. 36-47 https://doi.org/10.37493/2307-910X.2023.3.4

Abstract. When synthesizing automatic control systems, there is a problem with complex definition of controller parameters, and the main criterion becomes the achievement of stable operation, and the quality of the transient becomes of secondary importance. Such problems may

© Ковалёв Д. А., Шаряков В. А., Шарякова О. Л., Лебедева В. А., 2023

arise in the presence of two or more nested loops in the initial system. The correct synthesis of such systems is possible by using a slave control structure that allows us to replace the inner loop with an equivalent aperiodic link of the first order. By the example of an automatic temperature control system for superheated steam, the principle of building a slave control structure and the synthesis of such a system are shown in the paper.

Keywords: simulation modeling, control object, heat source, operation efficiency improvement, automatic discharge control system, cascade control scheme

For citation: Kovalev DA, Sharyakov VA, Sharikova OL, Lebedeva VA. Analytical tuning of regulators in a cascade automatic discharge control system. Modern Science and Innovations. 2023;3(43):36-47 (In Russ.). https://doi.org/10.37493/2307-910X.2023.3.4

Введение. Цель управления энергоблоком в эксплуатационных режимах состоит в обеспечении выработки в каждый момент времени требуемого количества электрической энергии (мощности $N_{\rm 3}$). При этом должны выполняться заданные требования к качеству функционирования энергоблока, которые обычно сводятся к минимизации удельного расхода топлива при сохранении всех эксплуатационных показателей на требуемых правилами технической эксплуатации оборудования и техники безопасности уровнях.

Общее число управляемых величин энергоблока достигает нескольких сотен, однако их них можно выделить сравнительно небольшое число наиболее важных к таким величинам относится – разрежение в топке $P_{\rm TII}$.

До последнего времени для регулирования подачи воздуха / отсоса воздуха из топки применялись направляющие аппараты, которые наряду с относительно простой конструкцией обладают и рядом недостатков основным таким недостатком является низкая экономичность регулирования.

Материалы и методы исследований. Наиболее экономичным способом регулирования производительности является изменение числа оборотов машины — частотное регулирование с использованием преобразователей частоты (ПЧ) (рисунок 1).

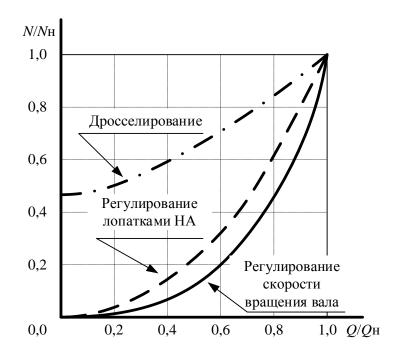


Рисунок 1. Относительное потребление мощности электродвигателем дымососов (N/NH) и вентиляторов при разных способах регулирования производительности (Q/QH / Figure 1. Relative power consumption by the electric motor of smoke pumps (N/Nh) and fans with different methods of regulating performance (Q/Qh)

ПЧ изменяет частоту вращения вала асинхронного двигателя (АД), тем самым изменяя величину потока дымовых газов и разрежение в топках котлов. Учитывая, что в режимах минимальной тяги, теперь снижается частота вращения вала АД, то будет и снижаться потребляемая мощность.

Управление тягой осуществляется следующим образом. Датчик давления (ИП) измеряет величину давления-разрежения в топке котла и передает результат измерения на частотный преобразователь (ПЧ). Встроенный в ПЧ регулятор обрабатывает сигнал с датчика, и в соответствии с заданием изменяет частоту питающего напряжения (в пределах 5-50 Гц), соответственно изменяется и частота вращения ротора двигателя дымососа/вентилятора. Таким образом, соблюдается технологический процесс удаления продуктов горения из топок котлов. Принципиальная схема системы регулирования разрежением в верхней части топки при изменении частоты вращения вала дымососа показана на

рисунок 2 [1, 2].

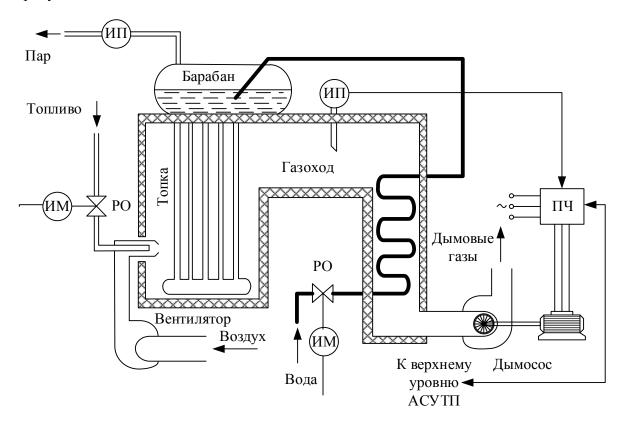


Рисунок 2. Принципиальная схема системы регулирования разрежением в верхней части топки при изменении частоты вращения вала дымососа / Figure 2. Schematic diagram of the rarefaction control system in the upper part of the furnace when the rotation speed of the smoke pump shaft changes

Результаты исследований и их обсуждение. На

рисунок 3 показана структурно-аналитическую схему системы регулирования по каналу «расход воздуха – разрежение в верхней части топки» при изменении производительности тягодутьевой машины.

Система регулирования разрежением в верхней части топки при изменении частоты вращения вала дымососа состоит из следующих передаточных функций:

Датчика:

$$W_{\text{ДВТ}}(p) = \frac{Y(p)}{U(p)} = \frac{I_{\text{ДВТ}}(p)}{P_{\text{BT}}(p)} = K_{\text{ДВТ}}$$
(1)

где $I_{\text{ДВТ}}\left(p\right)$ – выходной ток датчика разрежения в верхней части топки, мА; $P_{\text{ВТ}}\left(p\right)$ – регулируемая величина — разрежение в верхней части топки, Па, определяется максимальным значением датчика давления.

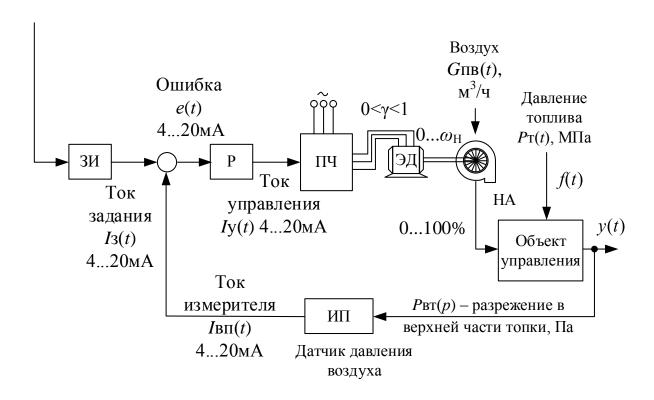


Рисунок 3. Алгоритмическая схема системы регулирования по каналу «расход воздуха – разрежение в верхней части топки» /
Figure 3. Algorithmic scheme of the control system through the channel "air flow – vacuum in the upper part of the furnace"

Задатчика управляемого параметра (задатчик интенсивности)

$$W_{3H}(p) = \frac{Y(p)}{U(p)} = \frac{I_3(p)}{P_{\Pi 3}(p)} = K_{3H}$$
 (2)

где $I_3(p)$ – выходной ток ЗИ, мА; g(p) – заданная величина – разрежение в верхней части топки, Па, определяется максимальным значением, соответствующему технологическому процессу.

Частотного преобразователя:

$$W_{\text{uff}}(p) = \frac{Y(p)}{U(p)} = \frac{\gamma(p)}{I_{\text{v}}(p)} = \frac{K_{\text{uff}}}{T_{\text{uff}} \cdot p + 1}$$

$$\tag{3}$$

где $K_{\rm ЧII}$ — коэффициент передачи частотного преобразователя; $T_{\rm ЧII}$ — постоянная времени частотного преобразователя, 0.005 ... 0.07 с.

Электрического двигателя

$$W_{\mathfrak{I},\mathcal{I}}(p) = \frac{Y(p)}{U(p)} = \frac{\omega_{\mathfrak{I},\mathcal{I}}(p)}{\gamma(p)} = \frac{K_{\mathfrak{I},\mathcal{I}}}{T_{\mathfrak{I},\mathcal{I}} \cdot p + 1} \tag{4}$$

где $K_{\rm ЭД}$ — коэффициент передачи электродвигателя; $T_{\rm ЭД}$ — постоянная времени электродвигателя,

$$K_{\ni \mathbf{\Pi}} = \frac{\omega_{\ni \mathbf{\Pi}}(p)}{\gamma(p)} \tag{5}$$

Тягодутьевой машины

$$W_{\text{ТДМ}}(p) = \frac{Y(p)}{U(p)} = \frac{G_{\text{IIB}}(p)}{\omega(p)} = K_{\text{ТВМ}}$$
(6)

где $G_{\Pi B}(p)$ — выходная величина НА — подача воздуха в топку, %, определяется максимальным допустимым значением, соответствующему технологическому процессу.

Объекта управления по управляющему воздействию:

По виду экспериментального графику изменения разрежения в верхней части топки при изменении расхода воздуха — можно сказать, что передаточная функция объекта управления обладает самовыравниванием и некоторым запаздыванием и имеет вид переходной функции апериодического звена первого порядка.

$$W_{\text{OY}}(p) = \frac{P_{\text{BT}}(p)}{G_{\text{IIB}}(p)} = \frac{K_{\text{OY}} \cdot e^{-\tau_{\text{OY}} \cdot p}}{T_{\text{OY}} \cdot p + 1}$$

$$\tag{7}$$

где $K_{\text{OY}}(p)$ — коэффициент усиления ОУ ; $T_{\text{OYI}}(p)$ — постоянная времени ОУ ; $au_{\text{OY}}(p)$ — запаздывание ОУ .

Проведем синтез системы [3-9].

Запишем передаточную функцию, разомкнутого контура системы регулирования по каналу «расход воздуха – разрежение в верхней части топки» [7]

$$W_{\text{PA3}}(p) = W_{\text{P}}(p) \cdot W_{\text{HH}}(p) \tag{8}$$

где $W_{\rm Pl}\left(p
ight)$ — передаточная функция регулятора давления в верхней части топки; $W_{\rm HH}\left(p
ight)$ — передаточная функция неизменяемой части контура «1».

$$W_{\text{HH}}(p) = W_{\text{VII}}(p) \cdot W_{\text{PII}}(p) \cdot W_{\text{TIIM}}(p) \cdot W_{\text{OV}}(p) \tag{9}$$

Запишем выражение неизменяемой части (9), учитывая выражения (1) - (8):

$$W_{\rm HH}\left(p\right) = \frac{K_{\rm uII}}{T_{\rm uII} \cdot p + 1} \cdot \frac{K_{\rm DJ}}{T_{\rm cut} \cdot p + 1} \cdot K_{\rm TBM} \cdot \frac{K_{\rm OV} \cdot e^{-\tau_{\rm OV} \cdot p}}{T_{\rm OV} \cdot p + 1} \tag{10}$$

Время запаздывания можно считать одной из постоянных времени системы (рисунок 4.а).

Тогда выражение (10) запишем следующим образом:

$$W_{\rm HH}\left(p\right) = \frac{K_{\rm u_{\rm II}}}{T_{\rm u_{\rm II}} \cdot p + 1} \cdot \frac{K_{\rm DJ}}{T_{\rm 2JI}} \cdot K_{\rm TBM} \cdot \frac{K_{\rm OY}}{T_{\rm OY} \cdot p + 1} \cdot \frac{1}{\tau_{\rm OY} \cdot p + 1} \tag{11}$$

Как видно из (11) неизменяемая часть состоит из четырех апериодических звеньев с разными постоянными времени,

Отметим, что постоянная времени объекта управления больше суммы остальных постоянных времени

$$\left(T_{\ni \Pi} + T_{\text{qII}} + \tau_{\text{OY}}\right) < T_{\text{OY}} \tag{12}$$

Ha

рисунок 4.б показано, по характеру протекания переходные процессы практически одинаковые для случая последовательно соединенных апериодических звеньев и апериодического звена, у которого постоянная времени равна сумме постоянных времени звеньев. Тогда выражение (11) можно переписать:

$$W_{\rm HH}(p) = K_{\rm ull} \cdot K_{\rm ЭД} \cdot K_{\rm TBM} \cdot \frac{K_{\rm OV}}{T_{\rm OV} \cdot p + 1} \cdot \frac{1}{\left(T_{\rm ull} + T_{\rm ЭД} + \tau_{\rm OV}\right) \cdot p + 1}$$
(13)

В системе, состоящей из апериодических звеньев включенных последовательно, причем постоянная времени одного из звеньев больше суммы постоянных времени оставшихся звеньев, применяют ПИ-регулятор с настройками на ОМ

$$W_{\rm p} = \beta \cdot \frac{\tau_{\rm p} \cdot p + 1}{\tau_{\rm p} \cdot p} \tag{14}$$

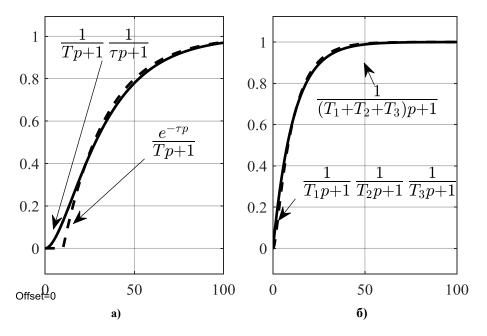


Рисунок 4. Преобразование звеньев / Figure 4. Link transformation

$$\frac{e^{-\tau \cdot p}}{T \cdot p + 1} \Rightarrow \frac{1}{T \cdot p + 1} \cdot \frac{1}{\tau \cdot p + 1};$$

$$\frac{1}{T_1 \cdot p + 1} \cdot \frac{1}{T_2 \cdot p + 1} \cdot \frac{1}{T_3 \cdot p + 1} \Rightarrow \frac{1}{(T_1 + T_2 + T_3) \cdot p + 1}$$

Настройки ПИ-регулятора должны компенсировать большую постоянную времени и коэффициенты усиления звеньев неизменяемой части контура, и параметры датчика обратной связи [4]:

$$\beta_{\rm P} = \frac{T_{\rm O}}{2 \cdot T_{\mu} \cdot \prod_{\nu=1}^{n} K_{\nu}}; \quad \tau_{\rm P} = T_{\rm O}$$

$$(15)$$

Настройки регулятора в соответствии с (10) и (15) будут:
$$\beta_{\rm P} = \frac{T_{\rm OV}}{2 \cdot T_{\mu} \cdot K_{\rm YII} \cdot K_{\rm PM} \cdot K_{\rm COV} \cdot K_{\rm JBH}}; \ \tau = T_{\rm OV} \eqno(16)$$

где $T_u = T_{\rm ЭЛ} + T_{\rm ЧП} + \tau_{\rm OY}$.

Запишем передаточную функцию разомкнутого контура (8) с учетом (10), (14) и (16):

Современная наука и инновации. 2023. № 3 (43)

$$W_{\text{PA32}}(p) = W_{\text{P}}(p) \cdot W_{\text{HH}}(p) =$$

$$= \beta \cdot \frac{\tau_{\text{P}} \cdot p + 1}{\tau_{\text{P}} \cdot p} \cdot W_{\text{ЧII}}(p) \cdot W_{\text{ЭД}}(p) \cdot W_{\text{ТДМ}}(p) \cdot W_{\text{ОУ}}(p) =$$

$$= \frac{T_{\text{ОУ}}}{2 \cdot T_{\mu} \cdot K_{\text{ЧII}} \cdot K_{\text{ЭД}} \cdot K_{\text{ТВМ}} \cdot K_{\text{ОУ}} \cdot K_{\text{ДВТ}}} \cdot \frac{1}{T_{\text{ОУ}} \cdot p + 1} \cdot \frac{1}{T_{\mu} \cdot p + 1} =$$

$$= \frac{1}{2 \cdot T_{\mu} \cdot K_{\text{ДВТ}} \cdot p \cdot (T_{\mu} \cdot p + 1)}$$

$$(17)$$

Выражение для замкнутого контура будет:

$$W_{3AM}(p) = \frac{W_{PA3}(p)}{1 + W_{PA3}(p) \cdot W_{JBT}(p)} = \frac{1}{2 \cdot T_{\mu} \cdot K_{JBT} \cdot p \cdot (T_{\mu} \cdot p + 1)} = \frac{1}{1 + \frac{1}{2 \cdot T_{\mu} \cdot K_{JBT} \cdot p \cdot (T_{\mu} \cdot p + 1)} \cdot K_{JBT}} = \frac{1}{2 \cdot T_{\mu} \cdot K_{JBT} \cdot p \cdot (T_{\mu} \cdot p + 1)} \cdot K_{JBT}$$

$$= \frac{1}{2 \cdot T_{\mu} \cdot p^{2} + 2 \cdot T_{\mu} \cdot p + 1}$$
(18)

Выполним имитационное моделирование [10] — [14] синтезированной системы регулирования разрежением в верхней части топки при изменении частоты вращения вала дымососа (

рисунок 5).

Полученные результаты можно использовать для решения актуальных задач повышения эффективности теплоэнергетических объектов [15]–[25], в частности – источника тепловой энергии.

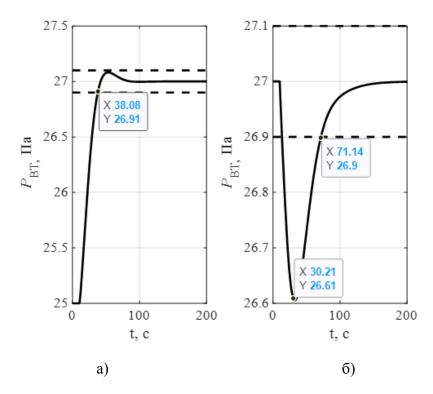


Рисунок 5. График изменения разрежение в верхней части топки при изменении числа оборотов тягодутьевой машины

- а) переходный процесс по управляющему воздействию;
- б) переходный процесс по возмущающему воздействию /

Figure 5. Graph of the change in the vacuum in the upper part of the furnace when the number of revolutions of the draft machine changes

- a) the transition process of the control action;
- b) the transition process of the disturbing effect

Заключение. В ходе работы показан пример синтеза многоконтурной системы регулирования разрежением в верхней части топки при изменении частоты вращения вала дымососа, состоящей из тех контуров.

Продемонстрирован пример настройки такой структуры, обоснован выбор регулятора.

ЛИТЕРАТУРА

- 1. Ротач В. Я. Теория автоматического управления теплоэнергетическими процессами: Учебник для вузов. М: Энергоатомиздат. 1985. 296 с., ил.
- 2. Плетнев Г. П. Автоматизация технологических процессов и производств в теплоэнергетике [Электронный ресурс]: учебник для студентов вузов. М.: Издательский дом МЭИ, 2016.
- 3. Ковалев Д. А, Шаряков В. А., Шарякова О. Л., Лебедева В. А. Синтез двухконтурной систем автоматического управления уровнем воды парового котла // Вестник Санкт-Петербургского государственного университета технологии и дизайна. Серия 1: Естественные и технические науки. 2022. № 3. С. 136–142. DOI: 10.46418/2079-8199_2022_3_24
- 4. Фрер Ф. Ф. Орттенбургер. Введение в электронную технику регулирования: пер. с нем. В. П. Цишевского. М.: Энергия, 1973. 190 с.
- 5. Башарин А. В., Новиков В. А., Соколовский Г. Г. Управление электроприводами. Л.: Энергоиздат, 1982. 392 с.
- 6. Ковалев Д. А., Шаряков В. А., Шарякова О. Л. Моделирование системы автоматического управления мощностью энергоблока при изменении общей нагрузки энергосистемы // Вестник Санкт-Петербургского государственного университета технологии и дизайна. Серия 1: Естественные и технические науки. 2022. № 1. С. 122–129. DOI: 10.46418/2079-8199_2022_1_19. EDN RGFHOC.
- 7. Ковалев Д. А., Шаряков В. А., Шарякова О. Л. Теория автоматического управления: учеб. пособие / М-во науки и высшего образования РФ, С.-Петерб. гос. ун-т пром. технологий и дизайна, Высш. шк. технологии и энергетики. Санкт-Петербург: ВШТЭ СПбГУПТиД, 2020. 79 с.
- 8. Сацук Т. П., Шаряков В. А., Шарякова О. Л. [и др.]. Об автоматической стабилизации напряжения контактной сети электрического подвижного состава // Электротехника. 2021. № 4 С. 36–40
- 9. Satsuk TP, Sharyakov VA, Vorob'ev AA [et al.]. Automatic Voltage Stabilization of an Electric Rolling Stock Catenary System. Russian Electrical Engineering. 2021;92(4):213-216. DOI: 10.3103/S1068371221300015
- 10. Makarova AA, Kaliberda IV, Pershin IM, Kovalev DA. Modeling a Production Well Flow Control System Using the Example of the Verkhneberezovskaya Area. Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2022, St. Petersburg, 25–28 yanvarya 2022 goda. St. Petersburg, 2022;760-764. DOI: 10.1109/ElConRus54750.2022.9755852. EDN PGAHVB.
- 11. Makarova AA, Mantorova IV, Kovalev DA, Kutovoy IN. The Modeling of Mineral Water Fields Data Structure. Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, Moscow, 26–28 yanvarya 2021 goda. Moscow, 2021;517-521. DOI: 10.1109/ElConRus51938.2021.9396250

- 12. Ilyushin AN, Kovalev DA, Afanasev PM. Development of Information Measuring Complex of Distributed Pulse Control System. 2019 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019, Vladivostok, 01–04 oktyabrya 2019 goda. Vladivostok: Institute of Electrical and Electronics Engineers Inc., 2019;8934173. DOI: 10.1109/FarEastCon.2019.8934173
- 13. Ковалев Д. А. Алгоритм моделирования содорегенерационного котла // Энергетика и автоматизация в современном обществе: Материалы IV Международной научнопрактической конференции обучающихся и преподавателей. В 2-х частях, Санкт-Петербург, 04 июня 2021 года / Под общей редакцией Т. Ю. Коротковой. Том Часть 1. 198095, Санкт-Петербург, ул. Ивана Черных, 4: Высшая школа технологии и энергетики Федерального государственного бюджетного образовательного учреждения высшего образования "Санкт-Петербургский государственный университет промышленных технологий и дизайна", 2021. С. 218–221. EDN VSMGXY.
- 14. Ковалев Д. А. Алгоритм моделирования зоны пиролиза и зоны окисления содорегенерационного котла // Энергетика и автоматизация в современном обществе: Материалы V Международной научно-практической конференции обучающихся и преподавателей, Санкт-Петербург, 20 мая 2022 года. Санкт-Петербург: Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2022. С. 190—193. EDN PVNVLJ.
- 15. Kovalev DA, Rusinov LA. Increase in environmental safety of recovery boiler. IOP Conference Series: Earth and Environmental Science: 4, Virtual, Online, 24–26 ноября 2021 года. Virtual, Online, 2022;012068. DOI: 10.1088/1755-1315/990/1/012068. EDN AOGERP.
- 16. Бобух А. А., Ковалев Д. А. Повышение энергосбережения закрытого централизованного теплоснабжения города при реконструкции центрального и модернизации индивидуального тепловых пунктов // Энергосбережение. Энергетика. Энергоаудит. 2014. № 3 (121). С. 12–18.
- 17. Бобух А. А., Ковалев Д. А., Климов А. А., Дзевочко А. М. Компьютерные энергосберегающие технологии управления системами жизнеобеспечения зданий // Восточно-Европейский журнал передовых технологий. 2014. Т. 6. № 2 (72). С. 48–53. DOI: 10.15587/1729-4061.2014.30503.
- 18. Ковалев Д. А., Бобух А. А. Повышение энергоэффективности получения и использования геотепловой энергии за счет автоматизации технологических процессов // Энергосбережение. Энерготика. Энергоаудит. 2013. № 10 (116). С. 18–23.
- 19. Ковалев Д. А., Бобух А. А. Автоматизация технологических процессов систем солнечных коллекторов и кондиционирования воздуха // Энергосбережение. Энергетика. Энергоаудит. 2013. № 7 (113). С. 2–6.
- 20. Бобух А. А., Ковалев Д. А. Компьютерно-интегрированная система автоматизации технологических объектов управления централизованным теплоснабжением: монография / / Под ред. А. А. Бобуха. Х.: ХНУГХ им. А. Н. Бекетова, 2013. 226 с.
- 21. Ковалев Д. А., Бобух А. А. Исследование объектов управления закрытой системы централизованного теплоснабжения на их физических моделях // Энергосбережение. Энергетика. Энергоаудит. 2012. № 10 (104). С. 35–40.
- 22. Ковалёв Д. А. Повышение эффективности эксплуатации источника тепловой энергии // Энергосбережение. Энергетика. Энергоаудит. 2010. № 11 (81). С. 48–54.
- 23. Ковалев Д. А., Русинов Л. А., Куркина В. В. Разработка диагностической модели для подсистем содорегенерационного котлоагрегата // Системный синтез и прикладная синергетика: Сборник научных работ XI Всероссийской научной конференции, п. Нижний Архыз, 27 сентября—01 октября 2022 года. Ростов-на-Дону— Таганрог: Южный федеральный университет, 2022. С. 40—43. DOI: 10.18522/syssyn-2022-6. EDN OYPYPT.
- 24. Ковалев Д. А. Анализ возможных нарушений технологических процессов в содорегенерационном котле // Известия Санкт-Петербургского государственного

технологического института (технического университета). 2021. № 56 (82). С. 108-111. DOI: 10.36807/1998-9849-2020-56-82-108-111. EDN WYMCWM.

REFERENCES

- 1. Rotach VYa. Teoriya avtomaticheskogo upravleniya teploenergeticheskimi processami: Uchebnik dlya vuzov. M: Energoatomizdat. 1985. 296 p, il.
- 2. Pletnev GP. Avtomatizaciya tekhnologicheskih processov i proizvodstv v teploenergetike [Elektronnyj resurs]: uchebnik dlya studentov vuzov. M.: Izdatel'skij dom MEI, 2016.
- 3. Kovalev DA, Sharyakov VA, Sharyakova OL, Lebedeva VA. Sintez dvuhkonturnoj sistem avtomaticheskogo upravleniya urovnem vody parovogo kotla. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta tekhnologii i dizajna. Seriya 1: Estestvennye i tekhnicheskie nauki. 2022;3:136-142. DOI 10.46418/2079-8199 2022 3 24
- 4. Frer F. Vvedenie v elektronnuyu tekhniku regulirovaniya. Orttenburger: per. s nem. V.P. Cishevskogo. M.: Energiya, 1973. 190 p.
- 5. Basharin AV, Novikov VA, Sokolovskij GG. Upravlenie elektroprivodami. L.: Energoizdat, 1982. 392 p.
- 6. Kovalev DA, Sharyakov VA, Sharyakova OL. Modelirovanie sistemy avtomaticheskogo upravleniya moshchnost'yu energobloka pri izmenenii obshchej nagruzki energosistemy. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta tekhnologii i dizajna. Seriya 1: Estestvennye i tekhnicheskie nauki. 2022;1:122-129. DOI: 10.46418/2079-8199_2022_1_19. EDN RGFHOC.
- 7. Kovalev DA, Sharyakov VA, Sharyakova OL. Teoriya avtomaticheskogo upravleniya: ucheb. Posobie M-vo nauki i vysshego obrazovaniya RF, S.-Peterb. gos. un-t prom. tekhnologij i dizajna, Vyssh. shk. tekhnologii i energetiki. Sankt-Peterburg: VSHTE SPbGUPTiD, 2020. 79 p.
- 8. Sacuk TP, Sharyakov VA, Sharyakova OL [i dr.]. Ob avtomaticheskoj stabilizacii napryazheniya kontaktnoj seti elektricheskogo podvizhnogo sostava. Elektrotekhnika. 2021;4:36-40.
- 9. Satsuk TP, Sharyakov VA, Vorob'ev AA [et al.]. Automatic Voltage Stabilization of an Electric Rolling Stock Catenary System. Russian Electrical Engineering. 2021;92(4):213-216. DOI: 10.3103/S1068371221300015
- 10. Makarova AA, Kaliberda IV, Pershin IM, Kovalev DA. Modeling a Production Well Flow Control System Using the Example of the Verkhneberezovskaya Area. Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2022, St. Petersburg, 25–28 yanvarya 2022 goda. St. Petersburg, 2022;760-764. DOI: 10.1109/ElConRus54750.2022.9755852. EDN PGAHVB.
- 11. Makarova AA, Mantorova IV, Kovalev DA, Kutovoy IN. The Modeling of Mineral Water Fields Data Structure. Proceedings of the 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, ElConRus 2021, Moscow, 26–28 yanvarya 2021 goda. Moscow, 2021;517-521. DOI: 10.1109/ElConRus51938.2021.9396250
- 12. Ilyushin AN, Kovalev DA, Afanasev PM. Development of Information Measuring Complex of Distributed Pulse Control System. 2019 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2019, Vladivostok, 01–04 oktyabrya 2019 goda. Vladivostok: Institute of Electrical and Electronics Engineers Inc., 2019;8934173. DOI: 10.1109/FarEastCon.2019.8934173
- 13. Kovalev DA. Algoritm modelirovaniya sodoregeneracionnogo kotla. Energetika i avtomatizaciya v sovremennom obshchestve: Materialy IV Mezhdunarodnoj nauchno-prakticheskoj konferencii obuchayushchihsya i prepodavatelej. V 2-h chastyah, Sankt-Peterburg, 04 iyunya 2021 goda / Pod obshchej redakciej T.YU. Korotkovoj. Tom CHast' 1. 198095, Sankt-Peterburg, ul. Ivana CHernyh, 4: Vysshaya shkola tekhnologii i energetiki Federal'nogo gosudarstvennogo byudzhetnogo obrazovatel'nogo uchrezhdeniya vysshego obrazovaniya "Sankt-Peterburgskij gosudarstvennyj universitet promyshlennyh tekhnologij i dizajna", 2021;218-221. EDN VSMGXY.
- 14. Kovalev DA. Algoritm modelirovaniya zony piroliza i zony okisleniya sodoregeneracionnogo kotla. Energetika i avtomatizaciya v sovremennom obshchestve: Materialy V

Mezhdunarodnoj nauchno-prakticheskoj konferencii obuchayushchihsya i prepodavatelej, Sankt-Peterburg, 20 maya 2022 goda. Sankt-Peterburg: Sankt-Peterburgskij gosudarstvennyj universitet promyshlennyh tekhnologij i dizajna, 2022;190-193. EDN PVNVLJ.

- 15. Kovalev DA. Increase in environmental safety of recovery boiler / D. A. Kovalev, L. A. Rusinov. IOP Conference Series: Earth and Environmental Science: 4, Virtual, Online, 24–26 noyabrya 2021 goda. Virtual, Online, 2022;012068. DOI: 10.1088/1755-1315/990/1/012068. EDN AOGERP.
- 16. Bobuh AA, Kovalev DA. Povyshenie energosberezheniya zakrytogo centralizovannogo teplosnabzheniya goroda pri rekonstrukcii central'nogo i modernizacii individual'nogo teplovyh punktov. Energosberezhenie. Energetika. Energoaudit. 2014;3(121):12-18.
- 17. Bobuh AA, Kovalev DA, Klimov AA, Dzevochko AM. Komp'yuternye energosberegayushchie tekhnologii uprayleniya sistemami zhizneobespecheniya zdanij. Vostochno-Evropejskij zhurnal peredovyh tekhnologij. 2014;2(72):48-53. DOI 10.15587/1729-4061.2014.30503
- 18. Kovalev DA, Bobuh AA. Povyshenie energoeffektivnosti polucheniya i ispol'zovaniya geoteplovoj energii za schet avtomatizacii tekhnologicheskih processov. Energosberezhenie. Energetika. Energoaudit. 2013;10(116):18-23.
- 19. Kovalev DA, Bobuh AA. Avtomatizaciya tekhnologicheskih processov sistem solnechnyh kollektorov i kondicionirovaniya vozduha. Energosberezhenie. Energetika. Energoaudit. 2013;7(113):2-6.
- 20. Bobuh AA, Kovalyov DA Komp'yuterno-integrirovannaya sistema avtomatizacii tekhnologicheskih ob"ektov upravleniya centralizovannym teplosnabzheniem: monografiya pod red. Bobuha AA. H.: HNUGH im. A. N. Beketova, 2013. 226 p.
- 21. Kovalev DA, Bobuh AA. Issledovanie ob"ektov upravleniya zakrytoj sistemy centralizovannogo teplosnabzheniya na ih fizicheskih modelyah. Energosberezhenie. Energetika. Energoaudit. 2012:10(104):35-40.
- 22. Kovalyov DA. Povyshenie effektivnosti ekspluatacii istochnika teplovoj energii. Energosberezhenie. Energetika. Energoaudit. 2010;11(81):48-54.
- 23. Kovalev DA, Rusinov LA, Kurkina VV. Razrabotka diagnosticheskoj modeli dlya podsistem sodoregeneracionnogo kotloagregata. Sistemnyj sintez i prikladnaya sinergetika: Sbornik nauchnyh rabot XI Vserossijskoj nauchnoj konferencii, p. Nizhnij Arhyz, 27 sentyabrya–01 2022 goda. Rostov-na-Donu–Taganrog: Yuzhnyj federal'nyj universitet, 2022;40-43. DOI: 10.18522/syssyn-2022-6. EDN OYPYPT.
- 24. Kovalev DA. Analiz vozmozhnyh narushenij tekhnologicheskih processov v sodoregeneracionnom kotle. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta). 2021;56(82):108-111. DOI: 10.36807/1998-9849-2020-56-82-108-111. EDN WYMCWM.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Дмитрий Александрович Ковалёв — кандидат технических наук, заведующий кафедрой Автоматизации технологических процессов и производств Высшей школы технологии и энергетики Санкт-Петербургского государственного университета промышленных технологий и дизайна, г. Санкт-Петербург, Россия, +79531711982

Владимир Анатольевич Шаряков – кандидат технических наук, доцент, доцент кафедры Автоматизации технологических процессов и производств Высшей школы технологии и энергетики Санкт-Петербургского государственного университета промышленных технологий и дизайна, г. Санкт-Петербург, Россия, v_a_shar@mail.ru

Ольга Леонидовна Шарякова – кандидат технических наук, доцент, доцент кафедры Электроэнергетики и электротехники Санкт-Петербургского государственного архитектурно-строительного университета, г. Санкт-Петербург, Россия, o_l_shar@mail.ru

Валерия Александровна Лебедева – инженер, магистр, Общество с ограниченной ответственностью «Научно-производственное предприятие «ЭПРО», г. Санкт-Петербург, Россия, lerochka.lebedeva2017@mail.ru

INFORMATION ABOUT THE AUTHORS

Dmitry A. Kovalev – Cand. Sci. (Tech.), Head of the Department of Automation of Technological Processes and Productions of the Higher School of Technology and Energy, St. Petersburg State University of Technologies and Design, Saint Petersburg, Russia, +79531711982

Vladimir A. Sharyakov – Cand. Sci. (Tech.), Associate Professor, Associate Professor of the Department of Automation of Technological Processes and Productions of the Higher School of Technology and Energy, St. Petersburg State University of Technologies and Design, Saint Petersburg, Russia, v_a_shar@mail.ru

Olga L. Sharyakova – Cand. Sci. (Tech.), Associate Professor, Associate Professor at the Department of Electric Power and Electrical Engineering, St. Petersburg State University of Architecture and Civil Engineering, Saint Petersburg, Russia, o_l_shar@mail.ru

Valeria A. Lebedeva – Engineer, Master, "Research and Production Enterprise "EPRO" Limited Liability Company, Saint Petersburg, Russia, lerochka.lebedeva2017@mail.ru

Вклад авторов: все авторы внесли равный вклад в подготовку публикации. **Конфликт интересов:** авторы заявляют об отсутствии конфликта интересов.

Contribution of the authors: the authors contributed equally to this article. **Conflict of interest:** the authors declare no conflicts of interests.

Статья поступила в редакцию: 12.07.2023; одобрена после рецензирования: 16.08.2023; принята к публикации: 07.09.2023.

The article was submitted: 12.07.2023; approved after reviewing: 16.08.2023; accepted for publication: 07.09.2023.