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Annomayus
B pabome npeonooicen ancopumm ons nocmpoenusi Heupocemesvix QYHKYuti-kanouoamos Jlsanynosa ¢ yenvio
Mmakcumuzayuu oyeHkKu obnacmu NPUMANCEHUSA NOTONHCEHUSA PABHOBECUAL. ﬂﬂ}l mozco H€06x0()l/lﬂ/l0, ymobwl uHeapu-
AHMHoe I’lO()MHODfC@CI’}’lBO, 3a0a6aemoe MHONCECMEOM YPO6HS, 3AHUMANIO KAK MOJCHO 60]lbmy)’0 00110 nO]lylleHHOﬁ cu-
MyAAyueli SIMIUPUYECKol oyeHKu obaacmu npumsdicenus. Peanuzayus 0anHotl yenu ocyujecmensemcs nymém geoe-
HUsl OONOJIHUMENbHO20 ClA2aemMo20 8 (YHKYUI nomepv. Aneopumm no3goisiem Cmpoums QYHKYuu-KaHouoamsol OJis
cucmem ¢ HEMUHEUHOCMAMU 00CMAmMo4Ho 0bwezo suda. Paboma ancopumma npounnocmpuposana Ha npumepe.
KuaroueBbie ciioBa: QyHkiws JIsmyHOBa, 0051aCTh PUTSHKCHNUS, ICKYCCTBEHHAsI HEHPOHHAS CETh.
Abstract
The paper proposes an algorithm for constructing Lyapunov candidate neural network functions in order to
maximize the estimate of the area of attraction of the equilibrium position. To do this, it is necessary that the invariant
subset, given by the level set, occupy the largest possible share of the empirical estimate of the attraction region ob-
tained by the simulation. The implementation of this goal is carried out by introducing an additional term in the loss
function. The algorithm makes it possible to construct candidate functions for systems with non-linearities of a rather
general form. The operation of the algorithm is illustrated by an example.
Keywords: Lyapunov function, attraction domain, artificial neural network.

Introduction
One of the most important problems in the analysis of control systems is to determine the
stability of the equilibrium position of a closed system. As a rule, in applied problems it should be
asymptotically or exponentially stable. However, there are cases when the area of attraction of a
stable equilibrium position is smaller than the area of operation that is of interest in practice. Thus,
for the target equilibrium position, it is desirable to be able to determine not only stability, but also
the area of attraction.
In engineering applications, stability is often determined by the first Lyapunov method for
a linearized system, but this method is not applicable to non-hyperbolic equilibria, that is, equilib-
ria with zero real part of at least one of the eigenvalues of a linearized system.
There are various methods for determining the area of attraction, but perhaps one of the
simplest and most common methods in practice is numerical simulation from the assigned area at
the current step. In addition, based on the simulation results, one can also judge the stability of the
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equilibrium position, even in the non-hyperbolic case. However, this method relies on the reliabil-
ity of numerical methods for solving the Cauchy problem, that is, it does not prove the stability of
the fact that the resulting region is a subset of the true attraction region.

These two problems can also be solved jointly using the second (direct) Lyapunov method.
If it is possible to construct a Lyapunov function that satisfies certain properties, then the stability
of the equilibrium position is proved. In addition, the resulting Lyapunov function can be used to
estimate the invariant subset of the attraction domain, which is defined by the level set.

The difficulty of applying the second Lyapunov method in practice lies in the absence of algo-
rithms for constructing Lyapunov functions. Such algorithms exist for linear and polynomial sys-
tems [1], but it is known that there is no rigorous formal algorithm for systems of general form,
since the problem of checking the positivity of functions of general form is unsolvable [2

In recent years, methods have been developed for constructing Lyapunov functions repre-
sented as a neural network [3; 4; 5]. This approach has a number of advantages. First, neural net-
works are universal approximators , that is, they are potentially capable of approximating a suita-
ble Lyapunov function for arbitrary systems. Secondly, methods, software and hardware for their
training are currently well developed. Thirdly, in recent years, methods and software tools for veri-
fying neural networks have been developed, that is, checking the fulfillment of certain properties
for given input values, for example, positivity in a certain area [6].

In most works in this area, the Lyapunov function is sought to prove stability, without the
requirement to obtain a maximum estimate of the attraction domain. In this work, a step is taken to
eliminate this shortcoming - an algorithm for constructing Lyapunov candidate functions is pro-
posed in order to maximize the estimate of the attraction domain for general nonlinear systems.

1. Methods for constructing Lyapunov functions for general systems

The paper considers nonlinear dynamical systems defined by differential
%= f(x) (1)
or difference equations
%11 = £ (x0), (2)

where ¥ € R%js the state vector, /* B" = R ap arbitrary differentiable function. We will as-

sume that the equilibrium position of interest to us exists and is zero: flo)= 0 which can always
be achieved by changing the coordinates.

Solution of systems ( 1)and ( 2)with the initial condition Xo € R"as %(t % )and
x(k; xkjrespectively, where t € R s continuous and K € Zis discrete time. We will assume that
the conditions for the existence and uniqueness of the solution are satisfied.
Since the conditions of the second Lyapunov method [ 7] are used below, we briefly recall its for-
mulation.

Theorem 1. Consider system ( 1), where ¥ € D S R" and the zero equilibrium position is
stable. If there exists a continuously differentiable function V: P = Esych that
v(0)=0

V(x) > 0,

for everyone ¥ € D /{03,
Vix) <0

for everyone * € P,

then the zero equilibrium position is Lyapunov stable. If, moreover, V(%) < 0 for g1 x € D / {0},
then the zero equilibrium is asymptotically stable.
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Similar theorems are also valid for discrete systems ( 2). In this case , the first difference is
used AV = V(£ %)) =V (% instead of the derivative V = VVRF(®), and it is enough for the

function Y'to be continuous.
Knowing the Lyapunov function, one can try to find an invariant subset of the attraction
domain. Namely, the set:

. ={x € R*"|V(x) =c} (3)

is an invariant subset of the attraction domain for all € & @sych that {2 = xer|VE< 0%}in

the continuous case or e S (x € R™ | AV < 0}jn the discrete case.
Thus, in order to maximize the estimate of the attraction domain, it is necessary to be able

to construct Lyapunov functions and find such Cthat the set 2chas the maximum volume.

The main disadvantage of this approach is the need to search for the Lyapunov function.
For general non-linear systems, the most promising is the construction of candidate functions
based on machine learning methods, which allow solving problems of large dimensions, but may
not give any formal guarantees.

The idea of using machine learning methods to solve the problem of constructing the Lya-
punov function is not new. In particular, works [ 6; 9; 10]. Later works differ in the type of repre-
sentation of the Lyapunov function in the form of a neural network , the architecture of the neural
network , and the loss function used, which formalizes the Lyapunov conditions. Thus, in [ 11],
the Lyapunov function is sought in the form of a multilayer neural network Ve (®with the number
of inputs equal to the dimension of the system and with one output. The region of interest is set 2,
and the points on which the network is trained are generated in it.

In [ 12], a linear controller and a Lyapunov function of a closed system are simultaneously
synthesized in a similar way. The loss function has the form (without taking into account the con-
trol for the article [ 12])

(4
L(B) = %Z (max[lil, — Ve (x;)) + max {IZI,T?H (x])) + V5 (0)

i=1

In [ 13], the construction of Lyapunov functions for high-dimensional systems is consid-
ered. The neural network has the form @6 : B" = R™ ‘\yhere m is the adjustable parameter. The
Lyapunov function is sought in the form Ve(x) = ll@g(x) — g (0)[13 + Slog(L +1x|I*). Here
8log(1 +l1xI1%)it can be replaced by another increasing function. Obviously, Ve (0) = Ofor

Ve(x) = 8log(1 +|Ix|1*) > Ogyeryone * * 0. Hence, only one term is sufficient in the loss func-
tion:

N (5)
L(8) = %Z max(0, Vg ()2

It is shown that for any € € (0 Land $ € Nthere exists a neural network of the

Va (x)above type with the ReLU activation function and size ©(£ <Jsuch that for any Lyapunov
function of ¥ € C7the corresponding function fwith zero equilibrium position

Ve — Ve = max|Vp(x) ~V(x)| <= (6)

for the right parameters 0
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The work [ 4] is also devoted to the construction of Lyapunov functions for high-
dimensional systems. It is assumed that the system admits the presence of a composite Lyapunov

function, that is, there are functions Yisuch that V(x) = Zi=1 Vi(z), where Z:is some subvector of

the vector %that defines the i - th subsystem. The upper estimate for the number of subsystems is
given as a parameter of the algorithm.
The work uses a single-layer network, divided into blocks, where each block is used for its

subsystem. Let be Amaxthe maximum degree of the subsystem. It is shown that for single-layer
networks with nonpolynomial infinitely differentiable activation functions, the ( 4)

N = D[ndm&xﬂs_dm“l (7)

that is, it grows exponentially not from the dimension of the system, but from the maximum di-

mension of the subsystem @masx.
The loss function is given as:

1(8) = ([Va () + IIXIF],)” + v (W (%) + g [x1[2])? + 2
+([Ve () + eyl Ix117].)%) (8)

and implements the requirements Ve (9 = —lIx[Pang eu(llxll) < Ve(x) < ey (IIxID), where
a(r) = c;rzl [a]- = min(0,a) [a], = max(0,a),

These papers are devoted to the problem of constructing the Lyapunov function, but do not
aim at maximizing the attraction domain. Thus, even if the loss function is zero for the entire re-
gion D, then it is not guaranteed that D is an attraction region, since the inclusion is not guaranteed
n.={x € R"|V(x) <0}

An exception is the work [ 5]. It uses the following idea. Let's assume that we know exactly
the area of attraction 2. Then, one can try to find such parameters Bof the Lyapunov function so

that the area X | Va(x) = cJcoincides with 3, that is, the level lines Ve (%) = ccoincide with the
boundary of the stability region. That is, you can set the decision rule

Va(x) =sign(c — V5 (%)) (9)

and get the classification problem: for any , Xthe label is defined as ¥ = 1if ¥ € Sand -1 otherwise.
The condition for the negative of the derivative must also be satisfied:
y=41 = V(x) <0

In this paper, the Lyapunov function is searched for in the form Ve (%) = g (%) "¢ (%),
where ®a(¥)is the neural network . It is obvious that Ve x) = 0. The loss function has the form:

I(y,%x,0) = max (l], —}r[c — Vs [x:])) + (10)

+ A (?) max(0,AVy (x))

The definition of labels ¥is carried out through simulation. The quadratic Lyapunov func-
tion obtained from the linearized system is taken as the first approximation. For it, the maximum

Crand area are found Sx. Then, to increase the area through simulation, labels are obtained in the
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area with a radius “Sxwhere ® = 1. In general, the algorithm does not guarantee convergence to
the true area of attraction and its increase with each iteration, but always gives some internal esti-
mate of it.

Thus, the problem can be formulated as follows: finding an algorithm for constructing a

candidate function Ye (®)and a constant €such that the region {Xcis an invariant subset of the attrac-
tion region of as large a volume as possible. Provided that the found algorithm works for general
systems.

2. Main result
The work [ 5] considers an online statement of the problem of increasing the attraction ar-
ea, so the simulation is carried out at each iteration to assign labels to points. At the same time,
using simulation, one can directly estimate the area of attraction, for example, by simulating in re-
verse time from some neighborhood of the equilibrium position or from points distributed inside
the area of interest to us.

Let us set the desired domain 2, in which we will evaluate the invariant subset of the at-
traction domain. Let us generate Vpoints in the given area Pxthat serve as initial conditions. By
simulation, we obtain a division Pxinto a set of Sconverging and Ynon-converging initial condi-

tions. The set 2can be interpreted as an empirical estimate of the area of attraction.

However, this method relies on methods for solving differential equations and does not prove that
the obtained points really belong to the attraction region. In addition, for systems of order greater
than four, the question arises of characterizing the attraction domain. For example, belonging to

some point not in the Pxarea of attraction without using simulation.
The paper proposes to obtain a set of points Zbelonging to the boundary of the obtained es-
timate of the attraction domain . For example, the vertices of the convex hull of the points can act

as such points >. Since the attraction domain does not have to be convex, a more accurate bounda-
ry can be obtained using -forms [ 14]. However, in this case, it is required to select the parameter

@ which is difficult if the system dimension is higher than three.
To maximize the attraction region, we will look for such a candidate function Ve (®that, in
addition to the Lyapunov conditions, the level lines Ve (x) = ecoincide with the boundary of the

stability region, that is, Ve (23) = cforall *» € B, To do this, it is proposed to introduce an addi-
tional term into the loss function:

J"-'-B

2D € Vo)

where ¥: € B, Ny = |B|,

Since the number of boundary points in the general case is much less than the number of
points from 2, then during training it is proposed to form a batch from the union of two sub-

batches : from the set Sand from the set &. Thus, at each training iteration, both internal and
boundary points will be present.

The constant €is set during training, let's denote it :, for example, you can always put
¢: = 1 However, after the completion of training, switching on e = FeR V(< E'}(or its
discrete analog) is guaranteed only when the loss function reaches zero. Otherwise, the problem
arises of finding the maximum value of the constant “for which the specified inclusion is per-
formed. In addition, in both cases, it is necessary to verify the obtained candidate function Ve.
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The obvious way is to jointly solve both problems, that is, to find the maximum value “for
which it is possible to verify the Lyapunov conditions. However, since verification generally takes
a long time, this approach seems inappropriate.

It seems more productive to test on a large validation set, also generated in the domain 2.

In this case, points are sought X:from the set of initial conditions Sv Y Sconverging to zero for
which at least one of the Lyapunov conditions is violated. The set of such points will be denoted as

P If it is non- empty , then the constant can be taken equal to the minimum value of the candi-
date function on it:

¢= min Ve(x;)—¢ (11)
where Eis some small constant. If the set is £ empty, then points are generated from some exten-
sion of the area 2, for which the minimum value is also searched. This procedure is especially

simple if Pis a hypercube. Then £ = 1.01 - D'\ Dtne search for a constant €is carried out accord-
ing to the formula above.

Note that the set £of points for which at least one of the Lyapunov conditions is violated
can be added to the training set and further training of the neural network can be carried out.

Thus, the algorithm for constructing a candidate function Y& and evaluating a constant €is
as follows:

Set the area of interest . We generate in it evenly distributed points for training Dr

We run the simulation for all points from DT., we get a set of St convergent to zero initial
conditions.

We find the set of boundary points Br.

Vp: R” - R

We train a neural network with a loss function:

L(B) = Niz (max[ﬂ, —Va(x))+ max(l], Ve (xij}} +

i=1

Ng
1 - -
+'5‘1N E (e, — Vo (y:))" + a; Vg (0),
Bi=1

where Ns = ISzl, Ng = |Brl, @y, a3 > Ogre positive weights, Ceis a constant during training.

We generate Devenly distributed points in the area for validation Dvand find the set > vof
initial conditions converging to zero.

We obtain a set ~of points from SpUs

is not satisfied.

¥for which at least one of the Lyapunov conditions

P D:P=D_\D

If the set is © empty, then we generate points in the neighborhood and new A find
a constant ©:

and complete the algorithm.
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If the number of iterations is less than the specified one, then we add the set Pto the train-

ing sample Stand go to step 4. Otherwise, we find the constant “using formula ( 12)and complete
the algorithm.
Example

To illustrate the method, let us estimate the area of attraction of the zero equilibrium posi-
tion of system ( 12):

1
X, = —le +log(1+x,);

3 1 1
X, =—§x1—3x1x2 +(§x1—x2)cnsx1 (13)

generate N = 16000pgints in the range X1 € [=7: 4], %, € [=1,2; 115]. The estimate of the area
of attraction obtained using the simulation is shown in Figure 1 by a solid line, the boundary
points obtained by constructing the convex hull are shown by filled circles.

— empirical boundary
10 4 —-- common loss
——- proposed loss
® boundary points
a -
6 -
4 -
2 -
0 -

Figure 1 - Evaluation of the area of attraction

Let 's define @1 = 1. @ = 0.1, ¢. = Land train a neural network with 3 hidden layers of
128 neurons with the softplus activation function . For validation , we will generate 128000 points
and we will carry out the training- validation procedure 10 times. The resulting area of attraction
for the loss function of the form ( 4)is shown in Figure 1 by a dash-dotted line, for the proposed
loss function it is a dashed line.
Note that in [ 15] the area of attraction proved for this system is a circle with a radius of 0.51, and
the learning process with the loss function from [ 5] diverges.
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Conclusion

In this paper, an algorithm is obtained for constructing Lyapunov candidate functions in order
to maximize the attraction domain. Although the proposed algorithm can be used for general non-
linear systems, it only allows one to construct candidate functions for which the Lyapunov condi-
tions are satisfied at some finite set of points. Thus, in the future, it is necessary to carry out verifi-
cation, that is, to prove that these conditions are met for all points from the estimated area. In the
current work, verification issues are not considered, it is proposed to use the dReal solver . These
issues will be the subject of further research.
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