
Современная наука и инновации №3 (39), 2022 

10                                                                                      №3, выпуск 39, 2022                                                                                                

 
 

 

Санкт-Петербургский государственный электротехнический университет 

 «ЛЭТИ» им. В.И. Ульянова (Ленина) Россия,  Санкт-Петербург,  

/ Saint Petersburg Electrotechnical University "LETI”, St. Petersburg, Russian Federation 

 

Аннотация 

В работе предложен алгоритм для построения нейросетевых функций-кандидатов Ляпунова с целью 

максимизации оценки области притяжения положения равновесия. Для этого необходимо, чтобы инвари-

антное подмножество, задаваемое множеством уровня, занимало как можно большую долю полученной си-

муляцией эмпирической оценки области притяжения. Реализация данной цели осуществляется путѐм введе-

ния дополнительного слагаемого в функцию потерь. Алгоритм позволяет строить функции-кандидаты для 

систем с нелинейностями достаточно общего вида. Работа алгоритма проиллюстрирована на примере. 

Ключевые слова: функция Ляпунова, область притяжения, искусственная нейронная сеть. 

Abstract 

The paper proposes an algorithm for constructing Lyapunov candidate neural network functions in order to 

maximize the estimate of the area of attraction of the equilibrium position. To do this, it is necessary that the invariant 

subset, given by the level set, occupy the largest possible share of the empirical estimate of the attraction region ob-

tained by the simulation. The implementation of this goal is carried out by introducing an additional term in the loss 

function. The algorithm makes it possible to construct candidate functions for systems with non-linearities of a rather 

general form. The operation of the algorithm is illustrated by an example.  

Keywords: Lyapunov function, attraction domain, artificial neural network. 

 

Introduction 

One of the most important problems in the analysis of control systems is to determine the 

stability of the equilibrium position of a closed system. As a rule, in applied problems it should be 

asymptotically or exponentially stable. However, there are cases when the area of attraction of a 

stable equilibrium position is smaller than the area of operation that is of interest in practice. Thus, 

for the target equilibrium position, it is desirable to be able to determine not only stability, but also 

the area of attraction. 

In engineering applications, stability is often determined by the first Lyapunov method for 

a linearized system, but this method is not applicable to non-hyperbolic equilibria, that is, equilib-

ria with zero real part of at least one of the eigenvalues of a linearized system. 

There are various methods for determining the area of attraction, but perhaps one of the 

simplest and most common methods in practice is numerical simulation from the assigned area at 

the current step. In addition, based on the simulation results, one can also judge the stability of the 
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equilibrium position, even in the non-hyperbolic case. However, this method relies on the reliabil-

ity of numerical methods for solving the Cauchy problem, that is, it does not prove the stability of 

the fact that the resulting region is a subset of the true attraction region. 

These two problems can also be solved jointly using the second (direct) Lyapunov method. 

If it is possible to construct a Lyapunov function that satisfies certain properties, then the stability 

of the equilibrium position is proved. In addition, the resulting Lyapunov function can be used to 

estimate the invariant subset of the attraction domain, which is defined by the level set. 

The difficulty of applying the second Lyapunov method in practice lies in the absence of algo-

rithms for constructing Lyapunov functions. Such algorithms exist for linear and polynomial sys-

tems [1], but it is known that there is no rigorous formal algorithm for systems of general form, 

since the problem of checking the positivity of functions of general form is unsolvable [2 

In recent years, methods have been developed for constructing Lyapunov functions repre-

sented as a neural network [3; 4; 5]. This approach has a number of advantages. First, neural net-

works are universal approximators , that is, they are potentially capable of approximating a suita-

ble Lyapunov function for arbitrary systems. Secondly, methods, software and hardware for their 

training are currently well developed. Thirdly, in recent years, methods and software tools for veri-

fying neural networks have been developed, that is, checking the fulfillment of certain properties 

for given input values, for example, positivity in a certain area [6]. 

In most works in this area, the Lyapunov function is sought to prove stability, without the 

requirement to obtain a maximum estimate of the attraction domain. In this work, a step is taken to 

eliminate this shortcoming - an algorithm for constructing Lyapunov candidate functions is pro-

posed in order to maximize the estimate of the attraction domain for general nonlinear systems. 

. 

1. Methods for constructing Lyapunov functions for general systems 

The paper considers nonlinear dynamical systems defined by differential 

 

, ( 1) 

 

or difference equations 

 

, ( 2) 

 

where is the state vector, is an arbitrary differentiable function. We will as-

sume that the equilibrium position of interest to us exists and is zero: , which can always 

be achieved by changing the coordinates. 

Solution of systems ( 1)and ( 2)with the initial condition as and 

respectively, where is continuous and is discrete time. We will assume that 

the conditions for the existence and uniqueness of the solution are satisfied. 

Since the conditions of the second Lyapunov method [ 7] are used below, we briefly recall its for-

mulation. 

 

Theorem 1. Consider system ( 1), where and the zero equilibrium position is 

stable. If there exists a continuously differentiable function such that 

, 

for everyone , 

for everyone , 

then the zero equilibrium position is Lyapunov stable. If, moreover, for all , 

then the zero equilibrium is asymptotically stable. 
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Similar theorems are also valid for discrete systems ( 2). In this case , the first difference is 

used instead of the derivative , and it is enough for the 

function to be continuous. 

Knowing the Lyapunov function, one can try to find an invariant subset of the attraction 

domain. Namely, the set: 

 

 ( 3) 

 

is an invariant subset of the attraction domain for all such that in 

the continuous case or in the discrete case. 

Thus, in order to maximize the estimate of the attraction domain, it is necessary to be able 

to construct Lyapunov functions and find such that the set has the maximum volume. 

The main disadvantage of this approach is the need to search for the Lyapunov function. 

For general non-linear systems, the most promising is the construction of candidate functions 

based on machine learning methods, which allow solving problems of large dimensions, but may 

not give any formal guarantees. 

The idea of using machine learning methods to solve the problem of constructing the Lya-

punov function is not new. In particular, works [ 6; 9; 10]. Later works differ in the type of repre-

sentation of the Lyapunov function in the form of a neural network , the architecture of the neural 

network , and the loss function used, which formalizes the Lyapunov conditions. Thus, in [ 11], 

the Lyapunov function is sought in the form of a multilayer neural network with the number 

of inputs equal to the dimension of the system and with one output. The region of interest is set , 

and the points on which the network is trained are generated in it. 

In [ 12], a linear controller and a Lyapunov function of a closed system are simultaneously 

synthesized in a similar way. The loss function has the form (without taking into account the con-

trol for the article [ 12]) 

 

 

( 4) 

 

 

 

In [ 13], the construction of Lyapunov functions for high-dimensional systems is consid-

ered. The neural network has the form , where m is the adjustable parameter. The 

Lyapunov function is sought in the form . Here 

it can be replaced by another increasing function. Obviously, for 

everyone . Hence, only one term is sufficient in the loss func-

tion: 

 

 

( 5) 

 

 

It is shown that for any and there exists a neural network of the 

above type with the ReLU activation function and size such that for any Lyapunov 

function of the corresponding function with zero equilibrium position 

 

 ( 6) 

for the right parameters . 
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The work [ 4] is also devoted to the construction of Lyapunov functions for high-

dimensional systems. It is assumed that the system admits the presence of a composite Lyapunov 

function, that is, there are functions such that , where is some subvector of 

the vector that defines the i - th subsystem. The upper estimate for the number of subsystems is 

given as a parameter of the algorithm. 

The work uses a single-layer network, divided into blocks, where each block is used for its 

subsystem. Let be the maximum degree of the subsystem. It is shown that for single-layer 

networks with nonpolynomial infinitely differentiable activation functions, the ( 4) 

 

, ( 7) 

 

that is, it grows exponentially not from the dimension of the system, but from the maximum di-

mension of the subsystem . 

The loss function is given as: 

 

 

 
 

 

( 8) 

and implements the requirements and , where 

, , . 

These papers are devoted to the problem of constructing the Lyapunov function, but do not 

aim at maximizing the attraction domain. Thus, even if the loss function is zero for the entire re-

gion D, then it is not guaranteed that D is an attraction region, since the inclusion is not guaranteed 

. 

An exception is the work [ 5]. It uses the following idea. Let's assume that we know exactly 

the area of attraction . Then, one can try to find such parameters of the Lyapunov function so 

that the area coincides with , that is, the level lines coincide with the 

boundary of the stability region. That is, you can set the decision rule 

 

 ( 9) 

 

 

and get the classification problem: for any , the label is defined as if and -1 otherwise. 

The condition for the negative of the derivative must also be satisfied: 

 

In this paper, the Lyapunov function is searched for in the form , 

where is the neural network . It is obvious that . The loss function has the form: 

 

 

 
 

( 10) 

The definition of labels is carried out through simulation. The quadratic Lyapunov func-

tion obtained from the linearized system is taken as the first approximation. For it, the maximum 

and area are found . Then, to increase the area through simulation, labels are obtained in the 
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area with a radius where . In general, the algorithm does not guarantee convergence to 

the true area of attraction and its increase with each iteration, but always gives some internal esti-

mate of it. 

Thus, the problem can be formulated as follows: finding an algorithm for constructing a 

candidate function and a constant such that the region is an invariant subset of the attrac-

tion region of as large a volume as possible. Provided that the found algorithm works for general 

systems. 

 

2. Main result 

The work [ 5] considers an online statement of the problem of increasing the attraction ar-

ea, so the simulation is carried out at each iteration to assign labels to points. At the same time, 

using simulation, one can directly estimate the area of attraction, for example, by simulating in re-

verse time from some neighborhood of the equilibrium position or from points distributed inside 

the area of interest to us. 

Let us set the desired domain , in which we will evaluate the invariant subset of the at-

traction domain. Let us generate points in the given area that serve as initial conditions. By 

simulation, we obtain a division into a set of converging and non-converging initial condi-

tions. The set can be interpreted as an empirical estimate of the area of attraction. 

However, this method relies on methods for solving differential equations and does not prove that 

the obtained points really belong to the attraction region. In addition, for systems of order greater 

than four, the question arises of characterizing the attraction domain. For example, belonging to 

some point not in the area of attraction without using simulation. 

The paper proposes to obtain a set of points belonging to the boundary of the obtained es-

timate of the attraction domain . For example, the vertices of the convex hull of the points can act 

as such points . Since the attraction domain does not have to be convex, a more accurate bounda-

ry can be obtained using -forms [ 14]. However, in this case, it is required to select the parameter 

, which is difficult if the system dimension is higher than three. 

To maximize the attraction region, we will look for such a candidate function that, in 

addition to the Lyapunov conditions, the level lines coincide with the boundary of the 

stability region, that is, for all . To do this, it is proposed to introduce an addi-

tional term into the loss function: 

 

 

where . 

 

Since the number of boundary points in the general case is much less than the number of 

points from , then during training it is proposed to form a batch from the union of two sub- 

batches : from the set and from the set . Thus, at each training iteration, both internal and 

boundary points will be present. 

The constant is set during training, let's denote it , for example, you can always put 

. However, after the completion of training, switching on (or its 

discrete analog) is guaranteed only when the loss function reaches zero. Otherwise, the problem 

arises of finding the maximum value of the constant for which the specified inclusion is per-

formed. In addition, in both cases, it is necessary to verify the obtained candidate function . 
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The obvious way is to jointly solve both problems, that is, to find the maximum value for 

which it is possible to verify the Lyapunov conditions. However, since verification generally takes 

a long time, this approach seems inappropriate. 

It seems more productive to test on a large validation set, also generated in the domain . 

In this case, points are sought from the set of initial conditions converging to zero for 

which at least one of the Lyapunov conditions is violated. The set of such points will be denoted as 

. If it is non- empty , then the constant can be taken equal to the minimum value of the candi-

date function on it: 

 

 
( 11) 

 

where is some small constant. If the set is empty, then points are generated from some exten-

sion of the area , for which the minimum value is also searched. This procedure is especially 

simple if is a hypercube. Then the search for a constant is carried out accord-

ing to the formula above. 

Note that the set of points for which at least one of the Lyapunov conditions is violated 

can be added to the training set and further training of the neural network can be carried out. 

Thus, the algorithm for constructing a candidate function and evaluating a constant is 

as follows: 

Set the area of interest . We generate in it evenly distributed points for training . 

We run the simulation for all points from ., we get a set of . convergent to zero initial 

conditions. 

We find the set of boundary points . 

We train a neural network with a loss function: 

 

 
 

where are positive weights, is a constant during training. 

We generate evenly distributed points in the area for validation and find the set of 

initial conditions converging to zero. 

We obtain a set of points from for which at least one of the Lyapunov conditions 

is not satisfied. 

If the set is empty, then we generate points in the neighborhood and find 

a constant : 

 

 

 
( 12) 

 

and complete the algorithm. 
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If the number of iterations is less than the specified one, then we add the set to the train-

ing sample and go to step 4. Otherwise, we find the constant using formula ( 12)and complete 

the algorithm. 

Example 

To illustrate the method, let us estimate the area of attraction of the zero equilibrium posi-

tion of system ( 12): 

 

 

 
 

 

( 13) 

generate points in the range The estimate of the area 

of attraction obtained using the simulation is shown in Figure 1 by a solid line, the boundary 

points obtained by constructing the convex hull are shown by filled circles. 

 

 
Figure 1 - Evaluation of the area of attraction 

 

Let 's define and train a neural network with 3 hidden layers of 

128 neurons with the softplus activation function . For validation , we will generate 128000 points 

and we will carry out the training- validation procedure 10 times. The resulting area of attraction 

for the loss function of the form ( 4)is shown in Figure 1 by a dash-dotted line, for the proposed 

loss function it is a dashed line. 

Note that in [ 15] the area of attraction proved for this system is a circle with a radius of 0.51, and 

the learning process with the loss function from [ 5] diverges. 
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Conclusion 

In this paper, an algorithm is obtained for constructing Lyapunov candidate functions in order 

to maximize the attraction domain. Although the proposed algorithm can be used for general non-

linear systems, it only allows one to construct candidate functions for which the Lyapunov condi-

tions are satisfied at some finite set of points. Thus, in the future, it is necessary to carry out verifi-

cation, that is, to prove that these conditions are met for all points from the estimated area. In the 

current work, verification issues are not considered, it is proposed to use the dReal solver . These 

issues will be the subject of further research. 
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